

THE UNITED REPUBLIC OF TANZANIA

MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGY

COMPUTER PROGRAMMING SYLLABUS FOR ORDINARY SECONDARY

EDUCATION VOCATIONAL STREAM FORM I-IV

© Vocational Education and Training Authority, 2023

Published 2023

Revised 2025

Vocational Education and Training Authority (VETA)

12 VETA Road,

41104 Tambukareli,

P.O. BOX 802,

Dodoma - Tanzania,

Telephone: +255 26 2963661

Website: www.veta.go.tz

Email: info@veta.go.tz

ISBN: 978-9912-750-25-8

This document should be cited as: Ministry of Education, Science and Technology. (2025).

Computer Programming Syllabus for Ordinary Secondary Education Vocational Stream

Form I-IV. Vocational Education and Training Authority.

All rights reserved. No part of this Syllabus may be reproduced, stored in any retrieval

system or transmitted in any form or by any means, whether electronic, mechanical,

photocopying, recording or otherwise, without the prior written permission of the Vocational

Education and Training Authority.

http://www.veta.go.tz/
mailto:info@veta.go.tz

ii

Table of Contents

List of Tables ... iii

Abbreviations and Acronyms ... iv

Definition of Key Terms .. v

Acknowledgements ... vi

1.0. Introduction ... 1

2.0. Main Objectives of Education in Tanzania .. 2

3.0. General Competencies for Ordinary Secondary Education Vocational Stream 2

4.0. General Competences of the Occupation .. 3

5.0. Main and Specific Competences ... 3

6.0. The Roles of Teachers, Students and Parents in Teaching and Learning 4

6.1. The Teacher .. 4

6.2. The Student ... 5

6.3. The Parent/Guardian ... 5

7.0. Teaching and Learning Methods .. 5

8.0. Teaching and Learning Resources ... 6

9.0. Assessment .. 6

10.0. Project Work ... 6

11.0. Number of Periods ... 7

12.0. Teaching and Learning Contents ... 7

Bibliography .. 152

iii

List of Tables

Table 1: Main and Specific Competences for Form I-IV .. 3

Table 2: Contribution of Continuous Assessment and National Examination in the Final

Score .. 6

Table 3: Detailed contents for Form One.. 8

Table 4: Detailed Contents for Form Two .. 44

Table 5: Detailed contents for Form Three ... 74

Table 6: Detailed contents for Form Four ... 118

iv

Abbreviations and Acronyms

CBET - Competence Based Education and Training Approach.

CIA - Confidentiality, Integrity and Availability

GPA - Grade Point Average

ICT - Information and Communication Technology

IDE - Integrated Development Environment

PHP - PHP: Hypertext Preprocessor

SQL - Structured Query Language

VET - Vocational Education and Training

VETA - Vocational Education and Training Authority

VS Code - Visual Studio Code

v

Definition of Key Terms

Assessment: The process of collecting evidence and making judgments on whether

competency has been achieved or whether specific skills and knowledge have been achieved

that will lead to the attainment of competency.

Circumstantial knowledge: Detailed knowledge that allows decision-making regarding

different circumstances and cross-cutting issues.

Competence: The ability to use knowledge, understanding, practicality, and thinking skills to

perform effectively to the workplace standards required in employment.

Element: A sub-unit (step) which reflects the learning sequence to achieve a unit's broad

learning objectives.

Occupational Standards: Specific requirements of competencies people are expected to

demonstrate in a particular occupational area, including knowledge and relevant attitudes.

They also act as performance tools for the assessment of the prescribed outcomes.

Performance criteria: Indicate the expected results or outcome through evaluative

statements.

Standard: A set of statements, which, if proven true under working conditions, means that an

individual is meeting an expected level and type of performance.

Underpinning Knowledge: This is essential knowledge needed to demonstrate competencies

associated with performing a given task.

Unit: A statement of broad learning objectives, which prescribe the requirements of a

standard in the form of practical skills, knowledge and appropriate attitudes.

vi

Acknowledgements

The writing of the Computer Programming Syllabus for Ordinary Secondary Education

Vocational Stream Form I-IV was a collaborative effort that involved the dedication and

expertise of a wide range of organisations and individuals. Vocational Education and Training

Authority (VETA) would like to thank all the organizations and experts who contributed to

developing this Syllabus. VETA appreciates the expertise of individuals and their time, effort,

and resources that were devoted to this important task. Their contributions have been crucial in

developing a relevant and comprehensive Syllabus aimed at equipping students with the skills

necessary for success in their fields. Furthermore, valuable inputs from employers in both formal

and informal sectors during labour market surveys are acknowledged. Likewise, VETA thanks

the Ministry of Education, Science and Technology uniquely for facilitating this Syllabus's

preparation, printing and distribution.

For and on behalf of:

Vocational Education and Training Authority

CPA. Antony M. Kasore

Director General

1

1.0. Introduction

Computer Programming is one of the occupations taught in the Ordinary Secondary Education

Vocational Stream. Learning Computer Programming is essential because Tanzania has a growing

demand for technology-driven solutions and skilled IT professionals capable of addressing local and

global challenges. As advancements in technology reshape industries, the need for modern digital

infrastructure, automated processes, and data-driven decision-making continues to rise. This creates

immense opportunities for economic growth, technological development, innovation, and employment

across various sectors.

By acquiring computer programming skills, students can develop software, systems, and applications

tailored to specific needs, such as mobile apps that improve access to services at home, electronic health

systems that enhance patient care in hospitals, e-learning platforms that transform education in schools,

e-government systems that streamline public services, and financial tools that support businesses and the

banking sector. These innovations contribute to local industry development, reduce dependency on

costly imported or proprietary software, and increase Tanzania’s capacity for technological self-reliance.

Moreover, programming skills empower individuals to participate in the global digital economy by

creating exportable software solutions, fostering entrepreneurship, and promoting digital inclusion. This,

in turn, drives sustainable development, enhances national competitiveness, strengthens digital literacy,

and improves the quality of life for Tanzanians. Ultimately, a well-developed pool of programmers is

key to building a robust knowledge economy, fostering innovation, and ensuring that Tanzania keeps

pace with the rapidly evolving technological landscape.

An occupation is a specific work area or a group of related job roles that demand particular skills,

knowledge, and competencies. It encompasses a structured professional activity within the labour

market, marked by distinct tasks, responsibilities, and established standards of practice. In the context of

Computer Programming, an occupation involves performing duties related to creating web, mobile, and

desktop applications, designing and implementing databases, and analysing data. Computer

programming involves writing, testing, and maintaining code that enables computer systems and

applications to perform specific tasks or solve problems. It encompasses the use of programming

languages to create algorithms, develop software, and control hardware.

Upon completion of the program, students will possess both theoretical and practical knowledge of

computer programming, from understanding fundamental concepts and algorithms to designing, coding,

testing, and maintaining software solutions. They will be proficient in using various programming

languages, developing web and mobile applications, creating databases, and implementing software

systems tailored to solve real-world problems. Additionally, students will gain business skills critical for

managing technology-driven projects, collaborating in interdisciplinary teams, and creating innovative

solutions that meet market demands.

Graduates of this occupation have diverse employment opportunities across various sectors, including

the public sector, private sector, and non-governmental organizations. In the public sector, they can work

as IT support assistants, junior web developers, database support technicians, junior programmers, or

mobile app support assistants in institutions such as government ministries, municipal councils, and

public training institutions. In the private sector, they may be employed as web designers, software

2

developers in tech companies and start-ups, web developers for e-commerce platforms, desktop

application developers for small and medium enterprises, or instructors in private training institutions.

Additionally, in non-governmental organizations, they can serve as software developers, web developers,

or desktop application developers, contributing to various development initiatives.

The Computer Programming Syllabus is designed to guide the teaching and learning of computer

programming at the Ordinary Secondary Education Form I-IV Vocational Stream in the United

Republic of Tanzania. The syllabus interprets the competences a student needs to develop while learning

Computer Programming. It contains valuable information that will enable teachers to effectively plan

their teaching process and help learners to develop the intended competences.

2.0. Main Objectives of Education in Tanzania

The main objectives of education in Tanzania are to enable every Tanzanian to:

(a) Develop and improve his or her personality so that he or she values himself or

herself and develops self-confidence;

(b) Respect the culture, traditions, norms and customs of Tanzania; cultural

differences; dignity; human rights; attitudes and inclusive actions;

(c) Advance knowledge and apply science and technology, creativity, critical

thinking, innovation, cooperation, communication and positive attitudes for

his or her own development and the sustainable development of the nation and

the world at large;

(d) Understand and protect national values, including dignity, patriotism,

integrity, unity, transparency, honesty, accountability and the national

language;

(e) Develop life and work-related skills to increase efficiency in everyday life;

(f) Develop a habit of loving and valuing work to increase productivity and efficiency in

production and service provision;

(g) Identify and consider cross-cutting issues, including the health and well-being

of the society, gender equality, as well as the management and sustainable

conservation of the environment; and

(h) Develop national and international cooperation, peace and justice per the

Constitution of the United Republic of Tanzania and international

conventions.

3.0. General Competencies for Ordinary Secondary Education Vocational Stream

The general competences for Ordinary Secondary Education, Form 1–IV, Vocational

Education stream are to:

(a) Apply the knowledge, skills and attitudes the student developed in the primary school

stage to increase his/her understanding of technical skills;

(b) Apply technical skills in designing, inventing and making various things to cope with life

and solve challenges in society;

(c) Appreciate citizenship and national virtues;

3

(d) Use language skills;

(e) Demonstrate self-confidence in learning in various fields, including science and

technology, technical knowledge and technical skills;

(f) Apply technical knowledge and skills in designing, discovering and making various

things to solve challenges in society, including cross cutting issues;

(g) Appreciate procedures and safety rules in using technical tools correctly; and

(h) Apply the technical knowledge and skills acquired to develop oneself with vocational and

technical education and join the workforce.

4.0. General Competences of the Occupation

Upon completion of this occupation, students are expected to have ability to:

• Solve programming problems using pseudo-code, flowcharts, and logical control

structures;

• Write computer programs using different programming paradigms;

• Analyze system requirements and design system architectures and user interfaces;

• Design and implement websites using HTML, CSS, and JavaScript;

• Create and host websites and mobile applications effectively;

• Develop and manage database-driven applications through advanced programming

techniques;

• Apply cybersecurity measures in programming by implementing encryption, data

validation, and threat mitigation;

• Develop web and mobile applications by integrating databases and scripting

languages; and

• Construct user-friendly mobile applications, including user interface design, event

handling, and deployment.

5.0. Main and Specific Competences

The main and specific competences to be developed are presented in Table 1

Table 1: Main and Specific Competences for Form I-IV

Main Competence Specific competences

1. Implementing computer applications 1.1. Maintaining computer hardware components

1.2. Managing word processing

1.3. Managing spreadsheet and data presentation
2. Basics of computer programming 2.1. Designing of computer programs

2.2. Implementing control structures in programming

2.3. Implementing functions

2.4. Implementing arrays in a program

3. Designing and hosting websites 3.1. Creating web pages using HTML

3.2. Formatting web pages with Cascading Style Sheets (CSS)

3.3. Implementing web scripting

3.4. Hosting and publishing websites

3.5. Designing websites using content management systems
4. Developing database systems 4.1. Implementing database modelling and relationships

4.2. Implementing physical database structure with structured

4

Main Competence Specific competences

query language

5. Developing database-driven web

applications

5.1. Creating PHP programs

5.2. Working with forms

5.3. Linking forms to databases for interactive web

applications

6. System analysis and design 6.1. Identifying and analysing software development

requirements

6.2. Building structures of the software
7. Web programming frameworks 7.1. Identifying and setting up a web development

environment

7.2. Building the front-end using a framework

7.3. Building the back-end using a framework
8. Basics of Object-Oriented Programming 8.1. Creating basic programs using classes and objects

8.2. Creating programs with inheritance and method

overriding

8.3. Implementing encapsulation and abstraction

8.4. Implementing polymorphism with interfaces and abstract

classes
9. Event-Driven Programming 9.1. Working with IDE and event-driven language

9.2. Developing programs using functions and arrays

9.3. Designing form with menus controls

9.4. Creating database connectivity options and reporting

10. Mobile Application Development 10.1. Working with mobile apps and development platforms

10.2. Handling user input and basic interactions

10.3. Working with data and multimedia

10.4. Optimising and deploying mobile apps
11. Integrating Cybersecurity Measures into

Applications

11.1. Identifying and controlling cybersecurity threats

11.2. Practising safe programming practices

11.3. Encrypting and decrypting data

11.4. Handling sensitive information in programming
12. Integrating programming with data

science

12.1. Creating basic programs

12.2. Collecting and storing data

12.3. Cleaning and organising data

12.4. Analysing data

12.5. Visualising data

6.0. The Roles of Teachers, Students and Parents in Teaching and Learning

Good relationships between a teacher, student and parent, or guardian is fundamental to

ensuring successful learning. This section outlines the roles of each participant in facilitating

effective teaching and learning of Computer Processing.

6.1. The Teacher

The teacher is expected to:

(a) Help the student to learn and develop the intended competences in Computer

Programming;

(b) Use teaching and learning approaches that will allow students with different

needs and abilities to:

i. Develops the competences needed in the 21st Century; and

ii. Actively participate in the teaching and learning process.

5

(c) Use student centered instructional strategies that make the student a centre of

learning, which allow them to think, reflect and search for information from

various sources;

(d) Create a friendly teaching and learning environment;

(e) Prepare and improvise teaching and learning resources;

(f) Conduct formative assessment regularly by using tools and methods which

assess theory and practice;

(g) Treat all the students according to their learning needs and abilities;

(h) Protect the student from a risky environment while he or she is at school;

(i) Keep track of the student’s daily progress;

(j) Identify individual student’s needs and provide the proper intervention;

(k) Involve parents/guardians and the society at large in the student’s learning

process; and

(l) Integrate cross-cutting issues and ICT in the teaching and learning process.

6.2. The Student

The student is expected to:

(a) Develop the intended competences by participating actively in various learning

activities inside and outside the classroom; and

(m) Participate in the search for knowledge from various sources, including

textbooks, reference books and other publications in online libraries.

6.3. The Parent/Guardian

The Parents/Guardian is expected to:

(a) Monitor the child’s academic progress in school;

(n) Where possible, provide a child with the needed academic support;

(o) Provide a child with a safe and friendly home environment which is conducive

for learning;

(p) Keep track of a child’s progress in behaviour;

(q) Provide the child with any necessary materials required in the learning process;

and

(r) Instill in a child a sense of commitment and positive value towards education

and work.

7.0. Teaching and Learning Methods

The teaching and learning methods are instrumental in developing student’s competences. This

syllabus suggests teaching and learning methods for each activity which includes but not

limited to demonstration, practical/hands-on activities, observations, role play, simulation,

group works, peer teaching/learning, discussions, presentations, field visits, research, and

project works. However, a teacher is advised to plan and use other appropriate methods based

on the environment or context. All the teaching and learning methods should be integrated with

the everyday lives of students. The focus is expected to be on practical application and

6

developing cognitive, affective, and psychomotor skills through learner-centred methods.

Vocational teachers act as facilitators, incorporating both school base teaching and project

work supervision.

8.0. Teaching and Learning Resources

The process of teaching and learning requires different resources. In that regard, both a

teacher and students should work together to collect or improvise alternative resources

available in the school and home environment when needed. Teachers and students are

expected to constantly seek for information from various sources to effectively facilitate the

teaching and learning process. The list of approved textbooks and reference books shall be

provided by the TIE.

9.0. Assessment

Assessment is important in teaching and learning of Computer Programming. It is divided into

formative and summative assessments. Formative assessment informs both the teacher and

students on the progress of teaching and learning, and in making decisions on improving the

teaching and learning process. Teachers are therefore, expected to apply a wide range of

formative assessment methods which include but not limited to demonstration, discussions,

presentations, oral questions, experiments, observations, practical assignments and projects.

Summative assessment, on the other hand, will focus on determining student’s achievement of

learning. Teachers are expected to use a variety of summative assessments including Form

Two National Assessment, terminal examination, annual examination, mock examination and

project. The scores obtained from these assessments will be used as Continuous Assessment

(CA). Therefore, the continuous assessments shall contribute 60% and the National Form IV

Examination shall be 40% as indicated in Table 2.

Table 2: Contribution of Continuous Assessment and National Examination in the Final

Score

Assessment Category Weight (%) National

Examination
Form Two National Assessment (FTNA) 6.0

 40

Form Three Terminal Examination 5.0
Form Three Anual Examination 5.0
Form Four Mock Examination 7.0
Project 7.0
Form Two Practical 10.0
Form Three Practical 10.0
Form Four Practical 10.0
Total 60

10.0. Project Work

Project work is a carefully planned and clearly defined task or problem that a student

undertakes, either alone or in a group, to enhance and apply the skills and knowledge gained

in the classroom, workshop, kitchen, or laboratory. It is based on the principles of "Learning

by Doing" and "Learning by Living." In this context, the implementation of Project Work in

7

secondary schools’ vocational streams is essential. Projects in the vocational stream should be

conducted in the core subject (occupation). To ensure its success, the supervision and

assessment of student project work must be consistent with the established guidelines

provided by National Examinations Council of Tanzania (NECTA).

11.0. Number of Periods

The Computer Programming Syllabus for Ordinary Secondary Education Vocational

Stream Form I-IV provides time estimates for teaching and learning each specific

competence. The estimates consider the complexity of the specific competences and the

learning activities. Eight (08) periods of 40 minutes each have been allocated per week,

whereby two (02) periods will be used for theory and 6 for practical sessions which may

require double periods (e.g., 80). Double periods will allow sufficient time for hands-on

activities.

12.0. Teaching and Learning Contents

The contents of the Syllabus are organised into a matrix with seven (07) columns, which

are main competences, specific competences, learning activities, suggested teaching and

learning methods, assessment criteria that is divided into (process assessment,

products/service assessment and underpinning knowledge), suggested teaching and

learning resources and number of periods as presented in Table 3 to 6.

8

Form One

Table 3: Detailed contents for Form One

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

1.

Implementing

computer

applications

1.1.

Maintaining

computer

hardware

components

a) Setting up

the

installation

of

computer

hardware

component

s

Demonstrations:

Show the process

of hardware

installation and

testing.

Hands-On

Activities:

Provide trainees

with broken or

functional

systems to work

on.

Problem-Solving

Tasks:

Assign tasks to

diagnose and

repair simulated

hardware faults.

Use of

Multimedia:

Show videos of

real-life hardware

setups and

installations.

The student

should be able to:

• Identify

computer

hardware

components

• Identify

hardware

components

accurately.

• Follow safety

procedures

(e.g.,

grounding to

avoid

electrostatic

discharge).

• Select

appropriate

tools for

installation

tasks.

• Apply

systematic

procedures

for installing

and

configuring

hardware.

The installed

hardware components

are compatible,

function as intended,

and the systems have

been verified to boot

successfully.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Identify and

handle different

types of

hardware

components.

• Properly install

and configure

hardware within

a system.

• Use diagnostic

tools to test

hardware

functionality.

Principles: The

student should

explain the principle

of:

• Compatibility of

components

(e.g.,

motherboard and

CPU socket

types).

• Power supply

The following tools,

equipment and safety

gear are to be available:

• Desktop computers

(functional and non-

functional for

practice).

• Complete computer

toolkits

(screwdrivers, anti-

static wristbands,

thermal paste).

• Diagnostic tools

(multimeters, POST

cards).

• Hardware

components

• Instruction manuals

for hardware

components.

• Multimedia

resources such as

tutorials and

animations.

• Mock-up hardware

for hands-on

practice

32

9

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

requirements and

distribution.

Theories: The trainee

should explain:

The trainee should

explain:

• Data transfer

theories within

computer

hardware (e.g.,

bus systems,

storage

hierarchies).

• Troubleshooting

techniques and

fault diagnosis

models

Circumstantial

knowledge

Detailed knowledge

about:

• Hardware

specifications

and compatibility

charts.

• Common issues

and solutions for

hardware

installation.

• Industry safety

standards for

hardware

10

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

maintenance

 b) Performing

the

maintenanc

e and repair

of the

computer

system

Demonstration:

Show students

how to identify,

diagnose, and

repair common

hardware and

software issues in

a computer

system.

Hands-On

Practice: Provide

students with

malfunctioning

computer systems

for

troubleshooting

and repair under

supervision.

Role-Playing:

Assign roles such

as technician and

client to simulate

real-world repair

scenarios and

communication

skills.

Case Studies:

Analyze real-

world examples

of hardware and

software failures,

The student

should be able to:

• Identify

hardware and

software

issues

accurately.

• Select

appropriate

tools and

techniques

for

maintenance

and repair

tasks.

• Follow

systematic

diagnostic

procedures.

• Apply safety

precautions

during

maintenance

and repair

activities.

Maintenance and

repair of the

computer system

performed according

industry standards

and practices.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Use diagnostic

tools and

software for

troubleshooting

hardware and

software issues.

• Perform

maintenance

tasks such as

cleaning,

component

replacement, and

updates.

• Safely dismantle

and reassemble

computer

systems.

Principles: The

student should

explain the principle

of:

• System

diagnostics and

error detection.

• Preventive

maintenance for

extending the

lifespan of

The following tools,

equipment and safety

gear are to be available:

• Diagnostic tools

(e.g., multimeters,

POST cards,

software utilities).

• Basic and advanced

toolkits (e.g.,

screwdrivers, anti-

static wristbands,

thermal paste).

• Spare hardware

components for

repair practice.

• Laptops, desktops,

and servers for

hands-on

maintenance.

• Maintenance and

repair manuals.

• Multimedia

resources such as

tutorial videos and

interactive

simulations.

• Case studies of

computer system

failures and their

solutions.

11

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

their causes, and

resolutions.

Interactive

Discussions:

Facilitate group

discussions on

common

problems

encountered

during

maintenance and

their preventive

measures.

Multimedia

Resources: Use

videos, diagrams,

and simulations to

illustrate repair

processes and

system

diagnostics.

computer

systems.

• Component

compatibility and

performance

optimization.

Theories: The trainee

should explain:

The trainee should

explain:

• Theories of

system failure

and recovery

(e.g., boot

failure, memory

errors).

• Data recovery

principles and

techniques.

Circumstantial

knowledge

Detailed knowledge

about:

• Common

hardware and

software

problems and

their solutions.

• Safe handling of

internal

components such

as motherboards,

12

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

hard drives, and

CPUs.

• Proper disposal

of non-functional

components and

e-waste.

 1.2

Managing

word

processing

a) Managing

files and

printing

Demonstration:

Show how to

create, save,

organize, and

retrieve files

within a word

processing

application.

Hands-On

Practice: Assign

students tasks to

manage files and

configure print

settings for

different types of

documents.

Interactive

Tutorials: Use

step-by-step

guides and videos

to teach file

management and

printing

techniques.

Case Studies:

Analyze scenarios

The student

should be able to:

• Create, name,

and organize

files into

appropriate

folders.

• Retrieve,

rename, or

delete files

securely.

• Select correct

printing

options,

including

page size,

orientation,

and quality.

• Handle

printer setup

and

troubleshoot

common

printing

issues.

Files are managed

properly and printed

using the appropriate

layout.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Create, save, and

organize files

systematically.

• Configure

advanced

printing options,

such as duplex

printing and

specific page

ranges.

• Use printer

settings to

optimize output

quality.

Principles: The

student should

explain the principle

of:

• File organization

and version

control.

• Printing

The following tools and

equipment are to be

available:

• Computers with

word processing

software (e.g.,

Microsoft Word,

Google Docs,

LibreOffice).

• Functional printers

with varying

capabilities (e.g.,

color, duplex).

• File storage options

such as local drives,

USBs, and cloud

storage.

• User manuals for

word processing

software and

printers.

• Tutorial videos and

interactive

simulations.

• Case studies on file

management and

printing challenges.

76

13

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

where proper file

management and

printing

techniques

enhance

productivity.

standards and

quality

assurance.

• Data security in

file handling.

Theories: The trainee

should explain:

The trainee should

explain:

• Theories of file

compression and

storage

management.

• The functioning

of printing

technologies and

devices.

Circumstantial

knowledge

Detailed knowledge

about:

• File formats and

their

compatibility

with different

word processors.

• Troubleshooting

techniques for

common file and

printer errors.

 b) Managing

editing and

Demonstration:

Show the use of

The student

should be able to:

Edited documents are

free from

Detailed knowledge

of:

 The following tools and

equipment are to be

14

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

formatting

documents

various editing

and formatting

tools in word

processing

software.

Hands-On

Practice: Assign

tasks to students

to edit and format

documents,

applying features

like text

alignment, styles,

and page layouts.

Interactive

Tutorials:

Provide step-by-

step guides and

multimedia

resources to

explain advanced

editing and

formatting

techniques.

Group

Discussions:

Facilitate

discussions about

formatting

standards for

different types of

documents (e.g.,

• Edit text

using tools

such as find

and replace,

track

changes, and

comments.

• Format text

using features

like font

styles,

paragraph

alignment,

and spacing.

• Apply

advanced

formatting

techniques,

such as

tables,

headers/foote

rs, and page

numbering.

• Review and

proofread

documents

for errors.

grammatical and

typographical errors,

adheres to formatting

standards.

Methods: The trainee

should explain how

to:

• Use editing tools

such as track

changes and

comments for

collaborative

work.

• Format text,

paragraphs, and

pages to meet

specific

document

requirements.

• Apply templates

and styles for

consistency.

Principles: The

student should

explain the principle

of:

• Document design

and layout for

readability and

professionalism.

• Typography and

its impact on

document clarity.

Theories: The trainee

should explain:

The trainee should

available:

• Computers with

word processing

software (e.g.,

Microsoft Word,

Google Docs,

LibreOffice).

• Sample documents

for editing and

formatting exercises.

• Access to templates

and style guides for

different document

types.

• User manuals and

tutorials for word

processing software.

• Multimedia

resources, such as

instructional videos

and interactive

guides.

• Case studies and

examples of

professional

document

formatting.

15

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

official letters,

reports).

Problem-Solving

Activities:

Challenge

students to

reformat poorly

designed

documents into

professional,

well-structured

outputs.

Case Studies:

Analyze examples

of well-formatted

and poorly

formatted

documents to

highlight best

practices.

explain:

• Theories of

information

presentation and

visual hierarchy.

• The impact of

document

aesthetics on

communication

effectiveness.

Circumstantial

knowledge

Detailed knowledge

about:

• Common

formatting errors

and how to avoid

them.

 c) Creating

tables

Demonstration:

Show how to

insert, modify,

and format tables

using word

processing

software.

Hands-On

Practice: Assign

students tasks to

create and format

tables for

The student

should be able to:

• Insert and

configure

tables

accurately in

a document.

• Modify table

structure,

including

adding/remov

ing rows and

columns.

Tables are created

with proper

alignment and

formatting to enhance

clarity and

readability.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Insert and

customize tables

in a word

processing

document.

• Use formatting

tools to enhance

the appearance

 The following tools and

equipment are to be

available:

• Computers with

word processing

software (e.g.,

Microsoft Word,

Google Docs,

LibreOffice).

• Sample data for

creating tables (e.g.,

schedules, financial

records, reports).

16

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

different

purposes, such as

data presentation

and layout design.

Interactive

Tutorials:

Provide

multimedia guides

to explain

advanced table

features like

merging cells,

applying

formulas, and

customizing

borders.

Problem-Solving

Activities:

Challenge

students to

recreate or modify

existing tables to

meet specific

formatting and

design

requirements.

Group Projects:

Facilitate

collaborative

projects where

students create

tables for real-

• Apply

formatting

features such

as borders,

shading, and

alignment.

of tables.

Principles: The

student should

explain the principle

of:

• Data

organization and

logical structure

within tables.

• Visual hierarchy

and its role in

table design.

• Alignment and

spacing to

enhance

readability.

Theories: The trainee

should explain:

The trainee should

explain:

• Data presentation

and its impact on

communication.

• Effective use of

visual elements

to guide the

reader’s

attention.

Circumstantial

knowledge

Detailed knowledge

• User manuals and

video tutorials for

table creation and

formatting.

• Examples of well-

designed tables for

reference.

• Interactive guides on

advanced table

features (e.g.,

formulas, sorting).

17

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

world

applications, such

as schedules or

reports.

about:

• Common table

formatting errors

and how to avoid

them.

• Best practices for

presenting

complex data in

tables.

 1.3

Managing

spreadsheet

and data

presentation

a) Managing

component

s,

worksheets

and

formatting

Demonstration:

Show how to

manage

spreadsheet

components such

as rows, columns,

and cells, and

demonstrate

worksheet

creation and

formatting

techniques.

Hands-On

Practice: Assign

students tasks to

manage multiple

worksheets, adjust

formatting, and

apply styles for

readability and

presentation.

Interactive

Tutorials: Use

The student

should be able to:

• Insert and

adjust rows,

columns, and

cells in a

spreadsheet

• Create,

rename, and

manage

multiple

worksheets.

• Apply

formatting

features such

as font styles,

borders,

shading, and

conditional

formatting.

• Organize data

into logical

categories

and use

sorting and

The spreadsheet is

well-organized, with

structured worksheets

and clear, visually

appealing formatting.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Format cells,

rows, and

columns to

improve the

readability of

data.

• Use worksheet

management

tools, such as

grouping and

linking

worksheets.

• Apply

conditional

formatting to

emphasize

important data

points.

Principles: The

The following tools and

equipment are to be

available:

• Computers with

spreadsheet software

(e.g., Microsoft

Excel, Google

Sheets, LibreOffice

Calc).

• Sample data sets for

formatting and

presentation

exercises.

• Templates for

professional

spreadsheet designs.

• User manuals and

interactive guides

for spreadsheet

tools.

• Case studies of

effective spreadsheet

designs.

• Video tutorials for

advanced formatting

99

18

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

videos and step-

by-step guides to

teach advanced

features, such as

conditional

formatting and

cell protection.

Problem-Solving

Activities:

Provide scenarios

where students

must organize and

format data to

meet specific

requirements.

Group Projects:

Encourage

collaborative

work on larger

datasets that

require efficient

management and

presentation.

Case Studies:

Analyze examples

of well-formatted

spreadsheets and

discuss their

effectiveness in

data presentation.

filtering tools

effectively.

student should

explain the principle

of:

• Effective data

organization and

visual hierarchy.

• Formatting

standards for

professional data

presentation.

Theories: The trainee

should explain:

The trainee should

explain:

• Visual data

communication

and its impact on

understanding.

• The importance

of consistency in

spreadsheet

formatting for

collaboration.

Circumstantial

knowledge

Detailed knowledge

about:

• Common

formatting errors

and how to

prevent them.

• The role of

and worksheet

management

techniques.

19

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

templates and

pre-defined

styles in

professional

spreadsheets.

 b) Implementi

ng

conditions

and data

Demonstration:

Show the use of

conditional

functions (e.g., IF,

COUNTIF,

SUMIF) and

applying

conditional

formatting for

data analysis.

Hands-On

Practice: Assign

students exercises

to implement

conditions using

formulas and

rules in

spreadsheets.

Interactive

Tutorials:

Provide step-by-

step instructions

and video

resources for

creating and

applying

conditional logic

in data

The student

should be able to:

• Write and

apply

conditional

formulas

(e.g., IF,

COUNTIF,

AVERAGEI

F)

• Use

conditional

formatting to

highlight

specific data

points.

• Validate data

using custom

rules and

input

restrictions.

• Organize and

analyze data

sets with

logical

conditions.

Conditional formulas

are correctly applied

to data.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Use conditional

formulas to

automate

calculations and

data analysis.

• Apply rules for

conditional

formatting to

emphasize trends

or outliers.

Principles: The

student should

explain the principle

of:

• Logical

operations and

their application

in spreadsheet

conditions.

• Data validation

and error

prevention

techniques.

 The following tools and

equipment are to be

available:

• Computers with

spreadsheet software

(e.g., Microsoft

Excel, Google

Sheets, LibreOffice

Calc).

• Sample data sets for

applying conditional

logic and validation

rules.

• Pre-designed

templates for

conditional

formatting exercises.

• User manuals and

video tutorials for

conditional

functions and

formatting.

• Case studies of

effective conditional

logic in business and

data management.

• Interactive guides

and real-world

scenarios for

20

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

processing.

Problem-Solving

Activities:

Present real-world

problems that

require

conditional logic,

such as

calculating

bonuses based on

performance

thresholds.

Case Studies:

Analyze examples

where conditions

and data

organization

improved

decision-making

or data

visualization.

Group Projects:

Encourage teams

to work on

datasets, applying

conditional logic

and formatting to

prepare reports.

• Effective use of

formatting to

convey data

insights.

Theories: The trainee

should explain:

The trainee should

explain:

• Conditional logic

and its

applications in

decision-making.

• The role of data

visualisation in

enhancing data

interpretation

Circumstantial

knowledge

Detailed knowledge

about:

• Conditional

formulas and

their real-world

applications.

• Common errors

in conditional

logic and how to

troubleshoot

them

practice.

 c) Implementi

ng

functions

Demonstration:

Illustrate how to

use various

The student

should be able to:

• Use basic and

Appropriate functions

and formulas applied

to automate

Detailed knowledge

of:

Methods: The trainee

 The following tools and

equipment are to be

available:

21

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

and

formulas

spreadsheet

functions (e.g.,

mathematical,

statistical, text,

logical) and create

formulas.

Hands-On

Practice: Assign

tasks to students

to implement

functions and

formulas for

solving real-world

problems, such as

financial

calculations or

data analysis.

Interactive

Tutorials:

Provide step-by-

step instructions

and video

resources for

creating and

applying

advanced

formulas.

Problem-Solving

Activities:

Present datasets

requiring students

to use multiple

advanced

spreadsheet

functions

correctly

(e.g., SUM,

AVERAGE,

VLOOKUP,

IF).

• Create

complex

formulas

combining

multiple

functions.

• Apply cell

referencing

methods

(absolute,

relative,

mixed).

calculations for

producing accurate

and reliable results.

should explain how

to:

• Use various

categories of

functions (e.g.,

text, logical,

lookup) for

different tasks.

• Combine

multiple

functions within

a single formula

to solve complex

problems.

Principles: The

student should

explain the principle

of:

• Formula design

for scalability

and reusability.

• Logical

operations and

their application

in decision-

making

functions.

Theories: The trainee

should explain:

The trainee should

explain:

• Data analysis

• Computers with

spreadsheet software

(e.g., Microsoft

Excel, Google

Sheets, LibreOffice

Calc).

• Sample datasets for

practice with

formulas and

functions.

• Templates for

common business

applications (e.g.,

financial models,

attendance trackers).

• User manuals and

video tutorials for

advanced

spreadsheet

functions.

• Case studies of

successful

spreadsheet

applications.

• Practice exercises

for troubleshooting

and debugging

formulas.

22

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

functions to

analyze and

generate results.

Group Projects:

Assign

collaborative

projects to create

comprehensive

spreadsheets with

interlinked

formulas.

Case Studies:

Examine real-

world examples

where functions

and formulas

were used to

streamline

operations or

make decisions.

and how

functions

enhance insights.

Circumstantial

knowledge

Detailed knowledge

about:

• Common errors

in formulas and

how to resolve

them.

• Advanced

functions like

INDEX,

MATCH, and

ARRAYFORM

ULA.

 d) Implementi

ng data

visualisatio

n with

charts and

tables

Demonstration:

Show how to

create and format

charts and tables

in spreadsheet

software,

including

customization of

labels, axes, and

legends.

Hands-On

Practice: Assign

The student

should be able to:

• Select

suitable chart

types for

different data

scenarios.

• Create and

format tables

for clear and

logical data

presentation

Charts and tables that

accurately represent

the data visually to

convey clear insights.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Select and create

appropriate chart

types based on

data

characteristics.

• Format and

customize charts

The following tools and

equipment are to be

available:

• Computers with

spreadsheet software

(e.g., Microsoft

Excel, Google

Sheets, LibreOffice

Calc).

• Sample datasets for

creating charts and

tables.

23

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

tasks where

students create

various types of

charts (e.g., bar,

line, pie, scatter)

and tables for

specific datasets.

Interactive

Tutorials:

Provide

multimedia guides

to explore

advanced features

like dynamic

charts and pivot

tables.

Group Projects:

Encourage

collaborative

work on projects

requiring visual

data

presentations,

such as reports or

dashboards.

Problem-Solving

Activities:

Present datasets

where students

must choose

appropriate

visualizations to

• Customize

charts and

tables using

formatting

tools (e.g.,

colors, styles,

labels).

and tables for

effective

communication.

• Utilize tools like

pivot tables for

summarizing and

analyzing large

datasets.

Principles: The

student should

explain the principle

of:

• Data

visualization

design, including

clarity,

simplicity, and

accuracy.

• Choosing the

right chart types

for specific data

comparisons

(e.g., trends,

proportions,

distributions).

• Aligning

visualizations

with the

audience's needs

and

comprehension

level.

• Templates for

common

visualizations, such

as sales dashboards

or performance

reports.

• User manuals and

video tutorials on

data visualization.

• Case studies and

examples of

professional

visualizations.

• Practice exercises to

improve chart

selection and

formatting skills.

24

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

represent trends

or comparisons.

Case Studies:

Analyze examples

of effective and

ineffective

visualizations,

emphasizing

design principles

and best practices.

Theories: The trainee

should explain:

The trainee should

explain:

• Visual

perception and

how they

influence data

interpretation.

• The role of

visual hierarchies

in guiding the

viewer’s

attention.

Circumstantial

knowledge

Detailed knowledge

about:

• Common

mistakes in data

visualization and

how to avoid

them.

• Best practices for

using colors,

fonts, and

spacing in charts

and tables.

2

Basics of

computer

programing

2.1

Designing of

computer

programs

a) Demonstrat

ing

application

tools and

Demonstration:

Show how to set

up programming

environments

The student

should be able to:

• Install and

configure

Programming tools

and environments are

correctly set up and

operational.

Detailed knowledge

of:

Methods: The trainee

should explain how

The following tools and

equipment are to be

available:

• Computers with pre-

86

25

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

environme

nt used in

programmi

ng

(e.g., IDEs, code

editors,

compilers)

Hands-On

Practice: Assign

tasks where

students install,

configure, and use

programming

tools

Interactive

Tutorials:

Provide guided

exercises to

explore features

of common

programming

tools and

environments.

programming

environments

correctly.

• Navigate and

utilize IDEs

or code

editors

efficiently.

• Use

debugging

tools and

techniques

effectively.

to:

• Set up and

configure

development

environments

and tools.

• Utilize

debugging tools

to identify and

resolve coding

errors.

Principles: The

student should

explain the principle

of:

• Efficient

programming

workflows using

tools and

environments.

• Version control

and collaboration

in software

development.

• Code debugging

and testing

processes.

Theories: The trainee

should explain:

The trainee should

explain:

• Software

installed IDEs and

programming tools

(e.g., Visual Studio

Code, PyCharm,

IntelliJ).

• Access to

programming

language compilers

and interpreters

• User manuals and

video tutorials for

programming tools.

• Sample code

repositories for

demonstration and

practice.

• Interactive guides

for setting up and

troubleshooting

programming

environments.

26

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

development

lifecycle and the

role of tools at

different stages.

• The importance

of integrated

development

environments

(IDEs) in

streamlining

coding tasks.

Circumstantial

knowledge

Detailed knowledge

about:

• Features and

advantages of

popular

programming

tools and

environments.

• Common issues

in tool setup and

how to resolve

them.

 b) Constructin

g pseudo-

code and

flow charts

Demonstration:

Illustrate the

creation of

pseudo-code and

flowcharts for

simple programs

using examples.

The student

should be able to:

• Understand

problem

statements

and

decompose

them into

Pseudo-code and

flow that provides a

clear and logical

representation of

program are

constructed.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Break down a

problem into

logical steps for

The following tools and

equipment are to be

available:

• Computers with

flowchart design

tools (e.g., Lucid

chart, Draw.io,

Visio) or graph

27

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

Hands-On

Practice: Assign

students exercises

to develop

pseudo-code and

corresponding

flowcharts for

various problem-

solving scenarios.

Interactive

Tutorials: Use

software tools

(e.g., Lucidchart,

Draw.io, or hand-

drawn sketches)

to create and

visualize

flowcharts.

Problem-Solving

Activities:

Provide tasks

where students

translate problem

statements into

pseudo-code and

design flowcharts.

logical steps.

• Write clear

and logically

correct

pseudo-code.

• Design

accurate and

readable

flowcharts

representing

program

logic.

• Use

appropriate

symbols and

conventions

for

flowcharts.

pseudo-code and

flowchart

construction.

• Use standard

flowchart

symbols and

structures.

• Ensure

consistency

between pseudo-

code and

flowcharts.

Principles: The

student should

explain the principle

of:

• Problem-solving

techniques in

programming.

• Logical

sequencing and

decision-making

in program

design

Theories: The trainee

should explain:

The trainee should

explain:

• The role of

pseudo-code and

flowcharts in

planning and

paper for manual

design.

• Reference materials

on flowchart

symbols and pseudo-

code conventions.

• Sample problems for

practice in pseudo-

code and flowchart

creation.

• Tutorials and guides

on logical problem-

solving and design.

• Examples of well-

constructed pseudo-

code and flowcharts.

• Practice exercises

for debugging

pseudo-code and

improving

flowcharts.

28

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

debugging

programs.

• How clear visual

representation

aids in

understanding

and

communication

of program logic.

Circumstantial

knowledge

Detailed knowledge

about:

• Common errors

in pseudo-code

and flowchart

design and how

to avoid them.

• Best practices for

aligning pseudo-

code with

standard

programming

syntax.

• Tools and

resources

available for

creating and

sharing

flowcharts.

 c) Implementi

ng basic

computer

Demonstration:

Show how to

write, compile,

The student

should be able to:

• Write clear,

Basic computer

programs that run

without errors and

Detailed knowledge

of:

Methods: The trainee

The following tools and

equipment are to be

available:

29

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

programmi

ng

execute, and

debug simple

programs using

programming

tools.

Hands-On

Practice: Assign

students to write

and execute basic

programs that

include

input/output,

loops,

conditionals, and

basic calculations.

Interactive

Tutorials:

Provide guided

exercises to

explore syntax,

structure, and

execution in a

programming

language

Problem-Solving

Activities:

Present scenarios

requiring students

to design and

implement

solutions in code

logically

structured

code for basic

problems.

• Use proper

syntax and

programming

conventions

• Debug and

resolve errors

during

program

execution.

produce expected

results.

should explain how

to:

• Write code using

correct syntax

and logic.

• Test and debug

programs to

identify and fix

errors.

Principles: The

student should

explain the principle

of:

• Logical flow in

programming

and problem-

solving.

• Data types,

variables, and

control

structures.

Theories: The trainee

should explain:

The trainee should

explain:

• How algorithms

translate into

program logic.

• The role of

control structures

in decision-

making and

• Computers with

installed

programming

environments (e.g.,

Python, Java, C++).

• Debugging tools and

text editors (e.g.,

Visual Studio Code,

PyCharm).

• Sample programs for

editing, debugging,

and testing.

• Programming

language guides and

reference materials.

• Case studies of

beginner programs

and real-world

examples.

• Exercises for

practicing coding

and debugging.

30

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

iteration.

Circumstantial

knowledge

Detailed knowledge

about:

• Common

programming

errors and

debugging

techniques.

• Best practices in

coding, including

commenting and

naming

conventions.

• Using built-in

libraries and

tools to simplify

coding tasks

 2.2

Implementing

control

structures in

programming

a) Implementi

ng

condition

structures

Demonstration:

Show how to use

conditional

statements (e.g.,

if, if-else, switch-

case) in a

programming

language.

Hands-On

Practice: Assign

tasks to students

to write programs

incorporating

The student

should be able to:

• Write

syntactically

correct

conditional

statements.

• Apply

nesting and

logical

operators in

condition

structures.

• Debug and

Programs that

execute correctly

with all possible

condition outcomes

handled are created.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Use conditional

statements (if, if-

else, switch-

case) effectively.

• Combine logical

operators (e.g.,

AND, OR, NOT)

for complex

conditions.

 The following tools and

equipment are to be

available:

• Computers with

programming

environments

installed

• Debugging tools and

software for

analyzing program

execution.

• Sample programs for

editing, testing, and

debugging

108

31

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

condition

structures to solve

specific problems.

Interactive

Tutorials:

Provide guided

exercises to

understand the

syntax, logic, and

nesting of

condition

structures.

Problem-Solving

Activities:

Present scenarios

requiring

decision-making

logic and

implement

solutions using

condition

structures.

test programs

involving

condition

structures.

Principles: The

student should

explain the principle

of:

• Logical decision-

making in

programming.

• Efficiency and

clarity in

designing

condition

structures.

• Testing all

possible

outcomes to

ensure robust

code.

Theories: The trainee

should explain:

The trainee should

explain:

• The role of

branching in

program

execution.

• How condition

structures affect

program flow

and logic

Circumstantial

knowledge

Detailed knowledge

conditional

statements.

• Programming

language reference

guides and syntax

manuals.

• Case studies

showcasing real-

world use of

condition structures.

• Exercises for

constructing

condition structures.

32

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

about:

• Common errors

in conditional

logic and

debugging

strategies.

 b) Implementi

ng loop

structures

Demonstration:

Show how to

write and execute

basic loop

structures (for,

while, do-while)

in a programming

language.

Hands-On

Practice: Assign

tasks requiring

students to solve

problems using

different loops.

Interactive

Tutorials:

Provide guided

examples to

explore nested

loops, infinite

loops, and loop

termination

conditions.

Problem-Solving

Activities:

Challenge

students with

The student

should be able to:

• Write

syntactically

correct loop

structures.

• Identify and

apply the

appropriate

type of loop

for specific

problems.

• Use break

and continue

statements

effectively to

control loop

execution.

Programs that

execute loops

correctly with the

desired looping

behaviour are

created.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Use different

types of loops

(for, while, do-

while)

effectively.

• Implement

nested loops for

solving complex

problems.

• Debug loop-

related issues

such as infinite

loops or

incorrect

iteration.

Principles: The

student should

explain the principle

of:

• Iteration in

programming for

repetitive tasks.

 The following tools and

equipment are to be

available:

• Computers with

programming

environments

installed

• Debugging tools and

software for

analyzing program

execution.

• Sample problems

and datasets for

practicing loop

structures.

• Programming

language reference

guides and syntax

manuals.

• Case studies

demonstrating the

use of loops in

solving real-world

problems.

• Exercises to practice

nested loops, loop

optimization, and

debugging.

33

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

scenarios that

require iteration,

such as summing

numbers or

creating patterns.

Case Studies:

Analyze sample

programs to

identify and

correct issues in

loop logic and

structure.

• Efficiency in

designing loops

to minimize

unnecessary

iterations.

• Logical structure

of loop

conditions and

initialization.

Theories: The trainee

should explain:

The trainee should

explain:

• The role of loops

in program

automation and

efficiency.

• Differences

between pre-test

(while, for) and

post-test (do-

while) loops.

Circumstantial

knowledge

Detailed knowledge

about:

• Common errors

in loop

implementation

and debugging

strategies.

• Practical use

34

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

cases of loops in

data processing,

gaming, and

algorithm design.

 c) Implementi

ng nested

structures

Demonstration:

Show how to use

nested control

structures (nested

loops and nested

conditionals) to

solve complex

problems.

Hands-On

Practice: Assign

exercises where

students

implement nested

structures for

tasks such as

creating patterns,

multi-level

decision-making,

or

multidimensional

data processing.

Interactive

Tutorials:

Provide guided

examples and

simulations of

nested loops and

conditionals in

real-world

The student

should be able to:

• Write

syntactically

correct nested

control

structures.

• Debug and

test nested

loops and

conditionals

for logical

accuracy.

• Identify when

and where

nested

structures are

appropriate.

Programs that handle

complex scenarios

accurately using

nested structures are

created.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Construct and

debug nested

loops and

conditionals.

• Use appropriate

nesting levels to

handle multi-

dimensional or

hierarchical data.

Principles: The

student should

explain the principle

of:

• Logical flow and

sequencing in

nested structures.

• Efficiency in

designing nested

loops and

conditionals to

minimize

redundancy.

• Error handling

and debugging

The following tools and

equipment are to be

available:

• Computers with

programming

environments

installed

• Debugging tools for

analyzing program

logic and execution

flow.

• Sample problems

and datasets for

practicing nested

structures.

• Tutorials and guides

for nested loops and

conditionals.

• Case studies

demonstrating real-

world use of nested

structures.

• Exercises focusing

on optimizing nested

structures for

efficiency.

35

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

scenarios.

Problem-Solving

Activities:

Present

programming

challenges

requiring the use

of nested

structures, such as

generating

multiplication

tables or matrix

operations.

nested structures.

Theories: The trainee

should explain:

The trainee should

explain:

• How nested

structures

contribute to

solving complex

programming

problems.

• The role of

logical

hierarchies in

program design

and decision-

making.

• The importance

of testing edge

cases in nested

conditions.

Circumstantial

knowledge

Detailed knowledge

about:

• Common pitfalls

in implementing

nested structures

and how to

resolve them.

• Best practices for

36

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

structuring

nested loops and

conditionals for

readability.

 2.3

Implementing

functions

a) Implementi

ng user-

defined

functions

and

function

calls in a

program

Demonstration:

Show how to

create, define, and

call user-defined

functions in a

programming

language.

Hands-On

Practice: Assign

exercises

requiring students

to implement

user-defined

functions to solve

specific problems.

Interactive

Tutorials:

Provide guided

examples to teach

function

parameters, return

values, and

recursive function

calls.

Problem-Solving

Activities:

Challenge

students with

The student

should be able to:

• Define

functions with

proper syntax

and structure.

• Pass parameters

to functions and

use return

values

effectively.

• Debug and test

functions for

correctness and

efficiency.

• Write modular

and reusable

code.

User-defined

functions that operate

correctly and produce

the expected results

are created.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Create and call

user-defined

functions in a

program.

• Use parameters and

return values to

transfer data

between functions.

Principles: The

student should

explain the principle

of:

• The role of

functions in

simplifying

program design.

• The impact of

modular

programming on

scalability and

debugging.

Theories: The trainee

should explain:

The following tools and

equipment are to be

available:

• Computers with

programming

environments installed.

• Debugging tools to

analyze program flow

and function execution.

• Sample problems for

writing and testing

user-defined functions.

• Tutorials and guides

for function

implementation and

debugging.

• Case studies

demonstrating modular

programming

techniques.

• Exercises focusing on

advanced function

features, such as

recursion and default

parameters.

67

37

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

scenarios where

modular

programming is

essential, such as

calculating

factorials or

simulating

processes.

Case Studies:

Analyze sample

programs to

highlight the

importance of

reusable and well-

defined functions.

The trainee should

explain:

• How nested

structures

contribute to

solving complex

programming

problems.

• The role of logical

hierarchies in

program design and

decision-making.

• The importance of

testing edge cases

in nested

conditions.

Circumstantial

knowledge

Detailed knowledge

about:

• Common errors in

function definition

and usage and how

to resolve them.

• Real-world

applications of

user-defined

functions in

software

development.

 b) Implementi

ng

recursive

Demonstration:

Show how

recursive

The student

should be able to:

• Define recursive

Recursive functions

execute correctly and

return expected

Detailed knowledge

of:

Methods: The trainee

The following tools and

equipment are to be

available:

38

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

function in

a program

functions work

using visual aids

(e.g., diagrams or

call stack

visualization).

Hands-On

Practice: Assign

tasks to write and

execute recursive

functions for

problems like

factorial

calculation and

Fibonacci

sequence

Interactive

Tutorials:

Provide guided

examples

demonstrating the

principles of base

cases and

recursive calls.

Problem-Solving

Activities:

Challenge

students to

identify and

implement

recursive

solutions for

problems suited to

functions with

proper base and

recursive cases.

• Debug and trace

recursive calls

using visual

tools or

debugging

software.

• Recognize when

recursion is a

suitable

approach for

problem-

solving.

results that are

consistent with

program

specifications.

should explain how

to:

• Identify problems

suitable for

recursion.

• Write recursive

functions with

proper base cases

and recursive logic.

Principles: The

student should

explain the principle

of:

• Recursive problem-

solving, including

base case and

recursive case

design.

• Trade-offs between

recursion and

iteration in terms of

performance and

clarity.

Theories: The trainee

should explain:

The trainee should

explain:

• How recursion

simplifies solving

problems with

repetitive or nested

substructures.

• Computers with

programming

environments.

• Debugging tools for

tracing recursive

calls (e.g.,

visualizers or IDE-

integrated tools).

• Sample problems for

implementing and

testing recursive

functions.

• Tutorials on

recursion

fundamentals and

techniques.

• Case studies

demonstrating

recursive solutions

for practical

problems.

• Exercises comparing

recursion and

iteration for various

problem types.

39

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

recursion. • The concept of

divide-and-conquer

and its

implementation via

recursion.

Circumstantial

knowledge

Detailed knowledge

about:

• Common pitfalls in

recursive

programming and

how to prevent

them.

• Real-world

applications of

recursion.

 2.4

Implementing

arrays in a

program

a) Demonstrat

ing

declaration

and

initializatio

n of single

dimensiona

l array

Demonstration:

Show how to

declare and

initialize single-

dimensional

arrays in a

programming

language.

Hands-On

Practice: Assign

tasks requiring

students to create

arrays, populate

them with data,

and perform

The student

should be able to:

• Declare and

initialize

arrays using

correct

syntax.

• Access,

modify, and

iterate over

elements in

the array.

• Debug and

resolve errors

related to

array

Arrays are correctly

declared and

initialized with valid

data to meet specified

requirements.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Declare and

initialize arrays

with fixed sizes

and dynamic

data.

• Access and

manipulate array

elements using

indices.

• Iterate through

arrays using

The following tools and

equipment are to be

available:

• Computers with

programming

environments

installed.

• Debugging tools to

visualize and

analyze array usage

in programs.

• Sample problems for

practicing array

operations.

• Tutorials on array

syntax and

63

40

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

operations like

accessing or

modifying

elements.

Interactive

Tutorials: Use

guided exercises

to teach the

syntax and

operations of

arrays, including

indexing and

iteration.

Problem-Solving

Activities:

Present challenges

where students

must use single-

dimensional

arrays to store and

process data (e.g.,

calculating

averages or

finding maximum

values).

Group Projects:

Facilitate

collaborative

tasks where

students design

programs utilizing

single-

boundaries or

initialization

• Use arrays to

solve

problems

efficiently.

loops for various

operations.

Principles: The

student should

explain the principle

of:

• Memory

allocation for

arrays and its

impact on

program

efficiency.

• Logical indexing

and boundary

conditions in

array operations.

• Data

organization

using arrays for

sequential

storage.

Theories: The trainee

should explain:

The trainee should

explain:

• How arrays

simplify data

management and

retrieval in

programming.

• The relationship

between arrays

operations in

different languages.

• Case studies

demonstrating the

use of arrays in real-

world applications.

• Exercises focusing

on array declaration,

initialization, and

iteration.

41

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

dimensional

arrays for specific

applications.

Case Studies:

Analyze real-

world scenarios

where arrays are

used effectively,

discussing their

advantages and

limitations.

and iterative

processing.

Circumstantial

knowledge

Detailed knowledge

about:

• Common errors

in array

declaration and

how to resolve

them (e.g., out-

of-bounds

errors).

• Real-world use

cases of arrays in

data storage and

processing.

 b) Demonstrat

ing

accessing

and

printing of

elements

from an

array

Demonstration:

Show how to

access and print

elements of

single-

dimensional

arrays using

indices in a

programming

language.

Hands-On

Practice: Assign

exercises where

students retrieve

and display

specific elements

The student

should be able to:

• Access array

elements

correctly

using indices.

• Traverse

arrays using

loops (e.g.,

for and while

loops).

Array elements are

accessed and

displayed (printed)

correctly as per the

task requirements.

Detailed knowledge

of:

Methods: The trainee

should explain how

to:

• Use indices to

retrieve specific

elements from an

array.

• Iterate through

arrays to display

all elements or

subsets.

• Debug errors

related to

incorrect index

access.

The following tools and

equipment are to be

available:

• Computers with

programming

environments.

• Debugging tools for

analyzing array

operations.

• Sample problems for

accessing and

printing array data.

• Tutorials and guides

on array traversal

and output

formatting.

• Case studies

42

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

from arrays,

iterate through

arrays, and print

all elements.

Interactive

Tutorials:

Provide guided

examples

demonstrating

array traversal

using loops and

conditional

checks.

Problem-Solving

Activities:

Present tasks

requiring data

extraction and

printing from

arrays, such as

finding specific

elements or

calculating their

properties (e.g.,

sum or average).

Principles: The

student should

explain the principle

of:

• Indexing in

arrays and its

role in element

access.

• Loop structures

for traversing

and printing

array elements.

• Error prevention

and handling in

array operations.

Theories: The trainee

should explain:

The trainee should

explain:

• How array

traversal

facilitates data

manipulation and

presentation.

• The importance

of bounds

checking in

accessing array

elements.

Circumstantial

showcasing effective

array data

presentation.

• Exercises focusing

on error handling

and efficient array

traversal.

43

Module Title

(Main

Competence)

Unit Title

(Specific

Competencie

s)

Elements

(Learning

Activities)

Suggested

Teaching and

Learning Methods

Assessment Criteria
Training Requirements/

Suggested Resources

Number

of Periods

per Unit
Process

Assessment

Product / Services

Assessment

Underpinning

Knowledge

knowledge

Detailed knowledge

about:

• Common pitfalls

in accessing

array elements

(e.g., off-by-one

errors) and their

resolutions.

• Real-world

applications of

array data

retrieval, such as

in data analysis

and reporting.

44

Form Two

Table 4: Detailed Contents for Form Two

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

1. Designing

and

hosting

websites

1.1 Creating web

pages using

HTML

(a) Creating

basic

webpage

using

HTML

Brainstorm:

Introduce HTML

basics and guide

students to define

syntax, and structure

of HTML.

Practical Work:

Guide students to

create a basic

webpage using

common tags (e.g.,

<html>, <head>,

<body>, <h1>).

Group Activity:

Students create a

simple webpage

using the basic

HTML tags and

present.

• Identify

required tags

for webpage

structure.

• Set up an

HTML

document

(HTML,

head, body).

• Add headings

and

paragraphs.

• Save and

preview the

webpage in a

browser.

• Troubleshoot

errors and

correct them.

Web pages

that load and

display

correctly in a

browser are

created.

Detailed knowledge

of:

Method used: The

student should explain

how to

• create a basic

webpage using

HTML.

Principles: The

student should explain

the HTML structure

and its components.

Theories: The student

should explain:

• HTML tag types

and usage.

Circumstantial

knowledge:

Detailed knowledge

about:

• Common HTML

tags

The following tools

and equipment are to

be available:

• Computer with a

code editor (e.g.,

VS Code,

Notepad++).

• Web browser

(e.g., Chrome,

Firefox).

• Projector for

demos.

54

(b) Implementin

g HTML

lists

Lecture: Explain

types of lists in

HTML (ordered,

unordered,

description).

• Identify list

types

(ordered and

unordered).

• Add list items

using .

The web page

containing the

HTML lists is

correctly

implemented.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• implement lists in

The following tools

and equipment are to

be available:

• Computer with a

code editor (e.g.,

VS Code,

45

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

Demonstration:

Show examples of

each list type.

Hands-on Exercise:

Students practice

creating lists.

• Nest lists

where

applicable.

• Save and

preview the

lists in a

browser.

• Troubleshoot

errors and

correct them.

HTML.

Principles: The

student should explain

the principle of when

to use each list type

Theories: The student

should explain:

• Types of lists

• Nested lists

Circumstantial

knowledge:

Detailed knowledge

about:

• Lists in web pages

Notepad++).

• Web browser

(e.g., Chrome,

Firefox).

• Projector for

demos.

(c) Creating

HTML links

Lecture: Introduce

hyperlinking using

the <a> tag.

Practical Work:

Students create pages

with internal,

external, and email

links.

Discussion: Explore

linking best practices

and accessibility.

• Identify types

of links

(internal,

external,

email).

• Add

hyperlinks

using the <a>

tag.

• Set attributes

(href, target,

title).

• Test links in

the browser.

• Troubleshoot

and correct

broken links.

Web pages

containing

correctly

functioning

internal and

external links

are created.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• Create HTML

links.

Principles: The

student should explain

the concept of

hyperlinking.

Theories: The student

should explain:

• Types of links

(e.g. internal,

external, email).

• The link tags

Circumstantial

knowledge:

The following tools

and equipment are to

be available:

• Computer with a

code editor (e.g.,

VS Code,

Notepad++).

• Web browser

(e.g., Chrome,

Firefox).

• Projector for

demos.

46

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

Detailed knowledge

about:

• Attributes

affecting link

behavior.

(d) Creating

data tables

and forms

using

HTML

Lecture: Introduce

table and form tags

(<table>, <tr>, <td>,

<form>, <input>,

etc.).

Demonstration:

Show examples of

tables and forms.

Practice: Students

create a form and a

table.

• Set up table

structure

using

<table>, <tr>,

<td>.

• Add form

elements

(<input>,

<select>,

<textarea>).

• Set form

attributes

(action,

method).

• Save and

preview the

table and

form in a

browser.

• Troubleshoot

display

issues.

Tables and

forms that use

HTML to

display data

correctly are

created.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• Create HTML

Tables

• Create HTML

forms

Principles: The

student should explain

the principle of why

and when to use

HTML tables and

forms

Theories: The student

should explain:

• The concepts of

HTML tables

• The concepts of

HTML forms.

• Structure of tables

and form

elements.

Circumstantial

knowledge:

Detailed knowledge

about:

The following tools

and equipment are to

be available:

• Computer with a

code editor (e.g.,

VS Code,

Notepad++).

• Web browser

(e.g., Chrome,

Firefox).

• Projector for

demos.

47

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

• form attributes

(e.g., action,

method).

1.2 Formatting

web pages

with

Cascading

Style Sheet

(CSS)

(a) Managing

colours in

CSS

Brainstorm:

Guide students to

define colors

properties in CSS

(e.g. color,

background-color).

Demonstration:

Show examples of

setting text and

background colours.

Practice: Students

apply colours in web

pages.

• Identify

colour

properties in

CSS.

• Apply text

colour using

color.

• Apply

background

colour using

background-

color.

• Use different

colour

formats (hex,

RGB, HSL).

• Test colour

application in

the browser.

Colours in

CSS are

appropriately

managed by

formatting

web pages

according to

design

requirements.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• Apply CSS

properties to

manage colors,

typography, and

layout

Principles: The

student should explain

the principle of:

• Colour models

(RGB, hex, HSL).

Theories: The student

should explain:

• CSS color

propertiesand

inheritance

• Color formats.

Circumstantial

knowledge:

Detailed knowledge

about:

• color contrast for

accessibility.

The following tools

and equipment are to

be available:

• Code editor and

browser.

• Colour model

charts and online

CSS colour tools.

36

(b) Implementin

g

typography

Brainstorm:

Guide students about

typography

• Set font

family using

font-family.

Topography in

CSS is

correctly

Detailed knowledge

of:

Method used: The

The following tools

and equipment are to

be available:

48

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

in CSS properties (font-

family, font-size,

line-height, font-

weight).

Practice: Students

apply typography

properties in sample

pages.

• Adjust font

size using

font-size.

• Control line

spacing using

line-height.

• Use font-

weight for

emphasis.

• Preview and

adjust the

typography.

implemented

according to

design

requirements.

student should explain

how to:

• implement

typography in

CSS.

Principles: The

student should explain

the principle of:

• font-family stacks

and fallback fonts.

Theories: The student

should explain:

• CSS typography

properties.

Circumstantial

knowledge:

Detailed knowledge

about:

• responsive

typography.

• Code editor and

browser.

• Colour model

charts and online

CSS colour tools.

 (c) Implementin

g the box

model in

CSS

Brainstorm: Explain

the CSS box model

(margin, padding,

border, width,

height).

Demonstration:

Show how to style

boxes using these

properties.

Practice: Students

apply box model

• Set width and

height of

elements.

• Apply

padding,

margin, and

border.

• Test and

adjust

spacing

between

elements.

• Use box-

Web pages

with a box

model

employing

CSS are

implemented

correctly.

Detailed knowledge

of: The student should

explain how to:

• implement the

CSS box model.

Principles: The

student should explain

the principle of:

• spacing and box-

sizing.

Theories: The student

should explain:

• CSS box model

The following tools

and equipment are to

be available:

• Code editor and

browser.

49

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

properties. sizing

property.

• Preview and

verify box

model

implementati

on.

structure

Circumstantial

knowledge:

Detailed knowledge

about:

• border styles and

effects.

 (d) Implementin

g page

layout

techniques

Instruction:

Introduce page

layout techniques

(CSS Grid, Flexbox,

float, and

positioning).

Demonstration:

Show examples of

page layouts using

these techniques.

Group Activity:

Students create

layouts.

• Apply layout

techniques

using CSS

Grid and

Flexbox.

• Use float and

clear

properties for

layout.

• Apply CSS

positioning

(relative,

absolute,

fixed).

• Test page

layout

responsivenes

s.

Web pages

displaying

structured and

responsive

layouts that

adapt to

different

screen sizes

are

implemented.

Detailed knowledge

of: The student should

explain how to:

• implement page

layout techniques

in CSS.

Principles: The

student should explain

the principle of:

• responsive web

design.

Theories: The student

should explain:

• layout models

(Grid, Flexbox)

Circumstantial

knowledge:

Detailed knowledge

about:

• media queries

The following tools

and equipment are to

be available:

• Code editor and

browser.

• Sample layout

designs.

 (e) Implementin

g graphics

in webpages

using CSS

Brainstorm: Explain

CSS properties for

graphics

(background-image,

background-size,

border-radius, box-

• Apply

background

images using

background-

image.

• Adjust

Web pages

displaying

properly styled

and positioned

graphics that

Detailed knowledge

of: The student should

explain how to:

• implement

graphics using

CSS.

The following tools

and equipment are to

be available:

• Code editor and

browser.

• Sample images

50

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

shadow).

Demonstration:

Show how to apply

and style graphics in

web pages.

Practice: Students

add graphics.

background

size using

background-

size.

• Add rounded

corners using

border-

radius.

• Add shadows

using box-

shadow.

• Test graphics

implementati

on

enhance visual

appeal without

affecting

performance

are

implemented.

Principles: The

student should explain

the principle of:

• layering of

backgrounds and

shadows.

Theories: The student

should explain:

• Concepts of

graphics

• CSS properties for

background and

borders.

Circumstantial

knowledge:

Detailed knowledge

about:

• performance

optimization for

graphics.

and webpages

with graphics.

 1.3 Implementin

g web

scripting

(a) Implementin

g variables

Brainstorm:

Introduce and guide

students on variable

declaration such as

var, let, and const.

Demonstration:

Show examples of

initializing and using

variables.

Practice: Students

write and test simple

• Declare

variables

using var, let,

and const.

• Initialize

variables

with different

data types.

• Test variable

usage in

scripts.

Declaration

and

initialization

of variables of

different data

types are

implemented

Detailed knowledge

of: The student should

explain how to:

• declare variables

• use variables in

JavaScript.

Principles: The

student should explain

the principle of:

• data types and

scope.

Theories: The student

should explain:

The following tools

and equipment are to

be available:

• Code editor and

browser.

• Sample scripts for

variable

demonstration

81

51

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

scripts. • Concepts of

variables and data

types

• Variable

declaration and

assignment rules

Circumstantial

knowledge:

Detailed knowledge

about:

• Data types

 (f) Implementin

g selection,

loop, and

array

Brainstorm: Guide

students to identify

cases that need

conditional

statements (if, else,

switch) and loops

(for, while, do-

while).

Practice: Students

implement

conditions and loops

in sample tasks.

• Apply

conditional

statements

(if-else,

switch).

• Use loops

(for, while,

do-while).

• Declare and

manipulate

arrays.

Selection, loop

and array are

correctly

implemented

in scripts to

perform the

required tasks.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• implement

conditions, loops,

and arrays.

Principles: The

student should explain

the principle of:

• control flow and

iteration.

Theories: The student

should explain:

• The concepts of

flow control and

arrays

• use of arrays in

storing and

accessing data.

Circumstantial

The following tools

and equipment are to

be available:

• Code editor and

browser.

• Sample problems

requiring loops

and arrays.

52

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

knowledge:

Detailed knowledge

about:

• array methods

 (g) Implementin

g basics of

functions

Instruction:

Introduce functions

and their syntax

(function keyword,

parameters, return

values).

Demonstration:

Show examples of

function definition

and invocation.

Practice: Students

create functions.

• Define

functions

with

parameters

and return

values.

• Invoke

functions

with different

arguments.

• Test and

debug

functions

The basics of

functions are

correctly

implemented.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• define functions

• implement

function.

Principles: The

student should explain

the principle of:

• function

parameters and

return values.

Theories: The student

should explain:

• The meaning of

functions,

arguments, and

parameters

• Function

declaration vs.

function

expressions.

Circumstantial

knowledge:

Detailed knowledge

about:

• modular

The following tools

and equipment are to

be available:

• Code editor and

browser.

• Sample tasks

requiring function

implementation

53

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

programming

 (h) Implementin

g event

handling

Brainstorm:

Guide students to

identify different

event handling

scenarios (e.g.,

onclick,

onmouseover).

Demonstration:

Show how to attach

event handlers to

elements.

Practice: Students

create interactive

web pages using

events.

• Attach event

handlers to

HTML

elements.

• Use inline

and external

event

handling

methods.

• Test event-

driven scripts

for

interactivity.

Web pages

responding

correctly to

user actions

are

implemented

according to

requirements.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• handle events in

JavaScript.

Principles: The

student should explain

the principle of:

• event propagation

model (bubbling

and capturing).

Theories: The student

should explain:

• Inline vs. external

event handling.

Circumstantial

knowledge:

Detailed knowledge

about:

• common events in

web programming

The following tools

and equipment are to

be available:

• Code editor and

browser.

• Sample

interactive web

pages.

 1.4 Hosting and

publishing

websites

(a) Setting up

web servers

Brainstorm:

Introduce and guide

students on the types

of web servers (e.g.,

Apache, Nginx).

• Install web

server

software

(e.g., Apache,

Nginx).

• Configure

A fully

functional web

server that can

serve static

and dynamic

content is set

Detailed knowledge

of:

Method used: The

student should explain

how to:

• set up a web

The following tools

and equipment are to

be available:

• Computer with

internet access.

• Web server

9

54

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

Demonstration:

Guide students

through installing

and configuring a

local web server.

Practice: Students

set up a basic server.

web server

settings

(ports, virtual

hosts).

up. server

Principles: The

student should explain

the principle of:

• client-server

architecture.

Theories: The student

should explain:

• Different types of

web servers and

their use cases

Circumstantial

knowledge:

Detailed knowledge

about:

• Security

considerations in

server setup.

software (e.g.,

Apache, Nginx).

• Sample website

files for testing.

 (b) Deploying

website

Instruction:

Explain deployment

steps (uploading

files, configuring

domain names).

Demonstration:

Guide students

through deploying a

website on a live

server.

Practice: Students

deploy their own

websites.

• Upload

website files

to a web

server.

• Configure

domain and

DNS settings.

• Test the

deployed

website for

accessibility.

An accessible

website hosted

on a server,

with correct

DNS and URL

configurations

is deployed.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• website

deployment

process.

Principles: The

student should explain

the principle of:

• DNS, domains,

and hosting.

Theories: The student

should explain:

The following tools

and equipment are to

be available:

• Computer with

internet access.

• Access to hosting

platforms (e.g.,

free hosting

services or local

servers).

• Domain

configuration

tools.

55

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

• the concepts of

name resolutions

• DNS translation

process of domain

names to IP

addresses.

Circumstantial

knowledge:

Detailed knowledge

about:

• FTP, SFTP, and

hosting platforms.

 1.5 Designing

websites

using content

management

systems

(a) Setting up

blog sites

Instruction:

Introduce CMS

platforms (e.g.,

WordPress, Joomla).

Demonstration:

Show how to install

and configure a

CMS.

Practice: Students

set up personal blog

sites using a CMS.

• Install a CMS

(e.g.,

WordPress).

• Configure

general

settings (title,

theme, users).

• Create initial

web pages.

A functional

blog site with

basic pages is

properly

designed.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• set up a CMS.

Principles: The

student should explain

the principle of:

• architecture of a

CMS.

Theories: The student

should explain:

• the concepts of

CMS

• Difference

between static

websites and

CMS-based

websites.

Circumstantial

The following tools

and equipment are to

be available:

• Local computer

or hosting

platforms with

CMS installation

support.

• Internet

connection.

• Sample content

for blogs.

54

56

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

knowledge:

Detailed knowledge

about:

• Managing CMS

settings.

 (b) Using

plugins and

widgets in

blog sites

Brainstorm: Guide

students discussion

on the purpose of

plugins and widgets.

Demonstration:

Show how to install

and configure

plugins (e.g., SEO,

contact forms).

Practice: Students

install and use

plugins.

• Install

essential

plugins

(SEO,

security).

• Add and

configure

widgets

(menus,

social media

links).

Appropriate

plugins and

widgets are

used in blog

sites.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• manage plugins

and widgets.

Principles: The

student should explain

the principle of:

• plugin architecture

and functionality

Theories: The student

should explain:

• the concepts of

plugins and

widgets

• Choosing the right

plugins and

widgets according

to purposes

• Security

implications of

using third-party

plugins.

Circumstantial

knowledge:

Detailed knowledge

The following tools

and equipment are to

be available:

• Local computer

or hosting

platforms with

CMS installation

support.

• CMS platform

(e.g., WordPress).

• Access to plugin

repositories.

• Internet

connection for

downloading

plugins and

widgets.

57

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

about:

• Compatibility

issues between

plugins.

2. Developin

g Database

Systems

2.1 Implementing

database

modelling and

relationships

(a) Designing

relations

Brainstorm: Guide

students on the

concept of database

relations and

normalization.

Practical: Guide

students to design

relations based on a

real-world scenario.

Discussion: Group

activity to evaluate

and refine designs.

• Identify

entities

• Identify

attributes and

keys.

• Apply

normalization

rules to

organize data

into relations.

• Create

relational

tables.

Database

relations are

correctly

designed.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• process of

designing

relations.

Principles: The

student should explain

the principle of:

• Normalization and

data redundancy

Theories: The student

should explain:

• The concepts of

entities, attributes,

relationships

• Types of

relationships (1:1,

1:M, M:N).

Circumstantial

knowledge:

Detailed knowledge

about:

• Data integrity and

dependencies.

The following tools

and equipment are to

be available:

• Database design

tools (e.g.,

MySQL

Workbench,

Lucidchart).

• Sample case

studies or

scenarios.

54

(b) Designing

entity

Brainstorm:

Introduce and guide
• Identify

entities and

An entity

relationship

Detailed knowledge

of:

The following tools

and equipment are to

58

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

relationships students on the

concept of entities

and relationships.

Practical:

Guide students in

identifying entities

and defining

relationships

between them.

Case Study:

Analyze and improve

existing entity

designs.

their

attributes.

• Define

relationships

between

entities (e.g.,

foreign keys).

• Validate the

relationships.

that effectively

represents the

problem

domain and

shows logical

connections

between

entities is

designed.

Method used: The

student should explain

how to:

• design entity

relationships.

Principles: The

student should explain

the principle of:

• primary keys,

foreign keys, and

cardinality.

Theories: The student

should explain:

• The concepts and

importance of

relational/referenti

al integrity

Circumstantial

knowledge:

Detailed knowledge

about:

• Impact of poorly

defined

relationships.

be available:

• Computer

installed with

tools like

Microsoft Access

or MySQL

Workbench.

• Example database

schemas.

• Problem

statements for

practice

scenarios.

(c) Designing

entity

relationship

diagrams

Brainstorm:

Explain ER diagrams

and their components

(entities, attributes,

relationships).

Practical Work:

Guide students in

creating ER

• Create ER

diagrams

based on

provided

scenarios.

• Use standard

notations

(e.g. Chen,

Crow's Foot).

A complete

and accurate

ER diagram

illustrating

entities,

relationships,

and attributes

in a logical

structure is

Detailed knowledge

of:

Method used: The

student should explain

how to:

• create and

interpret ER

diagrams.

Principles: The

The following tools

and equipment are to

be available:

• Computer

installed with

diagramming

tools (e.g.,

Lucidchart,

Draw.io, Visio).

59

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

diagrams using a

tool.

Activity:

Peer review of ER

diagrams for

improvement.

• Include

attributes,

keys, and

relationships.

designed. student should explain

the principle of:

• diagrammatic

representation of

databases.

Theories: The student

should explain:

• Types of notations

(e.g., Chen,

Crow's Foot).

Circumstantial

knowledge:

Detailed knowledge

about:

• Common pitfalls

in diagram design.

• Case studies or

problem

scenarios.

• Templates for

standard

notations.

2.2 Implementing

physical

database

structure with

Structured

Query

Language

(a) Implementin

g Data

Definition

Language

(DDL)

Instruction:

Explain DDL

commands

(CREATE, ALTER,

DROP).

Demonstration:

Show how to create

tables

Practice: Students

write SQL scripts to

define database

structures.

• Write DDL

scripts for

creating

database

tables

• Write DDL

commands to

modify

database

tables.

• Write DDL

commands to

delete

database

tables.

Database

schema with

well-defined

tables,

columns, and

constraints

implemented.

Knowledge evidence:

Detailed knowledge

of:

Method used: The

student should explain

how to:

• create database

tables using DDL

queries

• alter database

tables using DDL

queries

• drop database

objects using DDL

queries.

Principles: The

student should explain

The following tools

and equipment are to

be available:

• Computer

installed with

SQL tools (e.g.,

MySQL,

PostgreSQL, SQL

Server).

• Sample datasets

and schema

design tasks.

• Reference guides

on SQL syntax.

72

60

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

the principles of:

• data types,

primary keys, and

indexes.

Theories: The student

should explain:

• The concepts of

DDL

• Schema design

best practices.

Circumstantial

knowledge:

Detailed knowledge

about:

• Impact of poorly

designed schemas.

(b) Implementin

g Data

Manipulatio

n Language

(DML)

Brainstorm:

Guide students on to

define and use DML

commands (such as

INSERT, UPDATE,

DELETE).

Practical:

Guide students to

manipulate data in

tables.

Activity:

Students perform

CRUD operations on

sample databases.

• Write DML

commands to

insert,

update, and

delete data

into the

database

table.

• Write DML

commands to

update in the

database

table.

• Write DML

commands to

delete data

from the

The accurate

and consistent

data

manipulation

is

implemented.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• insert data into the

database table

using DML

queries

• update data in a

table using DML

queries

• delete data from a

database table

using DML

Principles: The

The following tools

and equipment are to

be available:

• Computer

installed with

database access

tools (e.g.,

phpMyAdmin,

pgAdmin).

• Predefined tables

for manipulation

tasks.

• Sample SQL

scripts for

practice.

61

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

database

table.

• Handle data

consistency

during

operations.

• Validate

results.

student should explain

the principles of:

• ACID properties

in data

manipulation.

Theories: The student

should explain:

• The basic

concepts of DML

queries.

Circumstantial

knowledge:

Detailed knowledge

about:

• Error handling

during data

manipulation

(c) Implementin

g relational

constraints

Brainstorm:

Guide students to

explore relational

database constraints

(PRIMARY KEY,

FOREIGN KEY,

UNIQUE, CHECK).

Demonstration:

Show the creation of

primary keys, foreign

keys using SQL

commands.

Practice:

Students define

• Define

primary and

foreign keys.

• Add

UNIQUE and

CHECK

constraints.

• Test

constraints

with sample

data.

A database

structure with

constraints that

ensures data

integrity and

enforces

business rules

is

implemented.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• write SQL

commands to

show the primary

key, foreign key,

unique key

• role of relational

constraints.

Principles: The

student should explain

the principles of:

The following tools

and equipment are to

be available:

• Computer

• SQL databases

with predefined

scenarios.

• Problem tasks

requiring integrity

constraints.

62

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

relational constraints

in tables.
• ensuring data

integrity with

constraints.

Theories: The student

should explain:

• Types and purpose

of constraints.

Circumstantial

knowledge:

Detailed knowledge

about:

• Common errors

when defining

constraints.

(d) Implementin

g Data

Query

Language

(DQL)

Discussion:

Guide students to

come up with

different scenarios

for using the

SELECT queries.

Demonstration:

Illustrate using basic

DQL commands and

advanced querying

techniques (e.g.,

JOIN, GROUP BY,

subqueries).

Practice:

Students write

queries to extract all

datafrom the

• Write

SELECT

queries to

extract

required data

from a

database

table.

• Use filtering,

grouping, and

sorting.

Queries

performing

correct

retrieval of

data based on

user needs are

implemented.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• retrieve data from

database tables

• filter or sort data

retrieved from the

database

Principles: The

student should explain

the principles of:

• Efficient data

retrieval.

Theories: The student

should explain:

• Different DQL

The following tools

and equipment are to

be available:

• Computer with a

working database

that has data.

• Query practice

scenarios (e.g.,

analytics tasks).

63

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

database or some of

the data based on

different criteria.

syntaxes (such as

SELECT)

• JOINs,

subqueries, and

aggregate

functions

Circumstantial

knowledge:

Detailed knowledge

about:

• Query

optimization and

indexing.

 (e) Implementin

g

Transaction

Control

Language

(TCL)

Discussion:

Guide students on

TCL commands

(such as COMMIT

and ROLLBACK).

Demonstration:

Illustrate transaction

handling in SQL.

Practice:

Students manage

transactions in a

multi-step task.

• Use the

COMMIT

command to

manage

transactions.

• Implement

ROLLBACK

on errors.

A database

that maintains

consistency

after

transaction

execution and

handles errors

correctly is

implemented.

Detailed knowledge

of:

Method used: The

student should explain

how to:

• commit data into

the database tables

• roll back data if an

error happens

before successful

saving of the data

in the database

Principles: The

student should explain

the principles of:

• ACID properties

in transactions.

Theories: The student

should explain:

• Importance of

The following tools

and equipment are to

be available:

• Computer with a

working database

that has data.

• Scenarios

requiring

transaction

management.

64

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

transaction

management.

Circumstantial

knowledge:

Detailed knowledge

about:

• Resolving

deadlocks and

handling

transaction

failures.

3. Developin

g database-

driven web

application

s

• Creating PHP

programs

(a) Applying

basic PHP

syntax

Brainstorm:

Introduce and guide

students on the PHP

syntax (e.g., tags,

statements,

variables).

Demonstration:

Show how to embed

PHP into HTML.

Practice: Students

write PHP scripts to

output text and

variables.

• Write basic

PHP scripts.

• Use PHP tags

appropriately

• Declare and

initialize

variables

correctly.

Simple

programs

demonstrating

the correct use

of PHP syntax

Detailed knowledge

of:

Method used: The

student should explain

how:

• PHP processes

scripts on the

server.

Principles: The

student should explain

the principles of:

• separating PHP

from HTML for

maintainable code.

Theories: The student

should explain:

• the PHP concepts

and program

syntax

• server-side

scripting lifecycle,

including request-

The following tools

and equipment are to

be available:

• Computer with

PHP development

environment (e.g.,

XAMPP,

WAMP).

• Text editors/IDEs

(e.g., VS Code,

PHPStorm).

108

65

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

response cycles.

Circumstantial

knowledge:

Detailed knowledge

about:

• Differences

between server-

side and client-

side programming

and their

integration in web

applications.

(b) Implementin

g

conditional

statements,

loops and

arrays

Brainstorm:

Explain and guide

students on PHP

conditional

statements (if-else,

switch), loops (for,

while), and arrays.

Demonstration:

Illustrate examples

of control structures

and arrays.

Practice:

Students write scripts

with decision-

making logic and

iteration.

• Write scripts

using

conditional

logic.

• Create loops

for repetitive

tasks.

• Use arrays to

store and

access multi-

dimensional

data.

Programs

performing

decision-

making (e.g.,

grading

system), loops

(e.g., summing

numbers), and

array

manipulation.

Detailed knowledge

of:

Method used: The

student should explain

how

• PHP handles

logic, iteration,

and data storage in

memory.

Principles: The

student should explain

the principles of:

• control structures

for decision-

making and data

iteration.

Theories: The student

should explain:

• algorithmic flow

control (decision

trees, loop

The following tools

and equipment are to

be available:

• Computer with

PHP development

environment (e.g.,

XAMPP,

WAMP).

• Text editors/IDEs

(e.g., VS Code,

PHPStorm).

• Sample scenarios

for implementing

control structures.

66

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

invariants) in PHP

• memory

management for

arrays in PHP.

Circumstantial

knowledge:

Detailed knowledge

about:

Safety precautions in

electronic work.

• Debugging and

handling errors in

scripts with

complex logic.

(c) Implementin

g functions

Instruction: Explain

PHP functions,

parameters, and

return values.

Demonstration:

Show how to define

and call functions.

Practice: Students

write reusable

functions for simple

tasks.

• Write PHP

functions

with inputs

and outputs.

• Use global

and local

variables

appropriately.

• Test function

behavior.

Programs with

reusable

functions (e.g.,

calculating

factorials,

formatting

strings, etc.).

Detailed knowledge

of:

Method used: The

student should explain

how to

• define functions in

PHP

• Call functions in

other parts of the

PHP program

Principles: The

student should explain

the principles of:

• procedural

programming and

modular design.

Theories: The student

should explain:

• The basic

The following tools

and equipment are to

be available:

• Computer with

PHP development

environment (e.g.,

XAMPP,

WAMP).

• Text editors/IDEs

(e.g., VS Code,

PHPStorm).

• Practice problems

requiring function

implementation.

67

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

concepts of PHP

functions and their

definitions

• Scope (global vs.

local), recursion,

and the role of

functions in

reducing code

redundancy.

Circumstantial

knowledge:

Detailed knowledge

about:

• Best practices for

writing

maintainable and

reusable functions,

such as

meaningful

naming and

parameter

validation.

(d) Integrating

PHP with

JavaScript

and event

handling

Brainstorm:

Guide students and

explain the role of

PHP and JavaScript

in full-stack

development.

Demonstration:

Show examples of

PHP generating

dynamic JavaScript.

• Use PHP to

generate

JavaScript

code.

• Handle user

interactions

with

JavaScript

events.

• Test

integration

Functional

web pages that

use PHP for

backend

processing and

JavaScript for

client-side

interactivity

(e.g., form

validation).

Detailed knowledge

of:

Method used: The

student should explain

how

• PHP and

JavaScript interact

in a client-server

Principles: The

student should explain

the principles of:

The following tools

and equipment are to

be available:

• Computer with

PHP development

environment (e.g.,

XAMPP,

WAMP).

• Text editors/IDEs

(e.g., VS Code,

PHPStorm).

68

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

Practice: Students

create PHP scripts

with event-driven

JavaScript

integration.

between PHP

and

JavaScript.

• asynchronous

operations and the

role of event-

driven

programming.

Theories: The student

should explain:

• Discuss the DOM,

event propagation

(bubbling vs.

capturing), and

asynchronous

programming

models.

Circumstantial

knowledge:

Detailed knowledge

about:

• Common

integration

challenges, such

as data

serialization, and

handling security

concerns.

• Sample projects

for PHP-

JavaScript

integration.

• Working with

forms

(a) Creating

forms and

handle form

data

Instruct:

Explain the structure

and purpose of

HTML forms (e.g.,

<form>, input fields,

and attributes like

method and action).

• Create forms

with

appropriate

elements

(text inputs,

dropdowns,

checkboxes,

etc.).

Functional

forms that can

accept, submit,

and display

user input

(e.g., a contact

form

submitting

Detailed knowledge

of:

Method used: The

student should explain

how to

• HTTP requests

work and how

data is passed

The following tools

and equipment are to

be available:

• Computer with

Web server

environment (e.g.,

XAMPP,

WAMP).

36

69

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

Demonstration:

Show how to create

forms and retrieve

data using PHP’s

$_POST and $_GET.

Practice:

Guide students to

build forms for real-

world scenarios (e.g.,

contact forms, survey

forms).

• Retrieve and

display form

data using

PHP.

• Use proper

form

attributes for

data

submission.

data to the

server).

using GET and

POST.

Principles: The

student should explain

the principles of:

• structuring forms

to ensure usability

and accessibility.

Theories: The student

should explain:

• form behaviours

and methods

• client-server

model in the

context of forms,

focusing on how

data flows

between the

browser and

server.

Circumstantial

knowledge:

Detailed knowledge

about:

• Data types

• Examples of form

data

(b) Performing

validation and

sanitation of

user input

Brainstorm: Guide

students to discuss

the concepts and

importance of

validation and

sanitation (client-side

vs. server-side).

• Validate form

data on the

client-side

• Validate form

data on the

server-side.

• Use PHP

functions like

Functional

forms that

validate input

(e.g., ensuring

required fields

are filled) and

sanitize user

data before

Detailed knowledge

of:

Method used: The

student should explain

how to

• validate form data

using JavaScript

and PHP.

The following tools

and equipment are to

be available:

• Computer with

Web server

environment (e.g.,

XAMPP,

WAMP).

70

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

Demonstration:

Show how to

implement validation

using JavaScript

(client-side) and PHP

(server-side).

Practice: Students

write scripts to

validate form input

(e.g., checking

required fields,

sanitizing email

input).

filter_var()

for input

sanitation.

• Test scripts

for handling

invalid input

gracefully.

processing. • sanitize form data

before submitting

Principles: The

student should explain

the principles of:

• securing user

input to prevent

common attacks

like SQL Injection

and XSS.

Theories: The student

should explain:

• validation rules

(e.g., regex for

patterns, email

validation)

• PHP sanitation

functions.

Circumstantial

knowledge:

Detailed knowledge

about:

• common security

issues in form

handling and

mitigation

strategies

• Validation cases

• Linking

forms to

databases for

interactive

web

applications

(a) Implementin

g insertion

of form data

into a

database

Brainstorm:

Guide students to

recap on database

CRUD operations

and their importance

in interactive

• Create forms

with fields

mapped to

database

columns.

• Write PHP

Functional

forms that

successfully

insert data into

a database

(e.g., user

Detailed knowledge

of:

Method used: The

student should explain

how to

• use INSERT SQL

The following tools

and equipment are to

be available:

• Computer

• Database server

(e.g., MySQL,

81

71

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

applications.

Demonstration:

Show how to connect

to a database using

PHP and insert data

using prepared

statements.

Practice:

Guide students to

create forms that

allow data insertion

(e.g., a user

registration form).

scripts to

open and

close

database

connection

• Write PHP

scripts to

insert form

data into a

database.

• Use prepared

statements

for secure

data

insertion.

records,

product

entries).

commands with

PHP scripts to add

data to a database

• Open and close

database

connection

Principles: The

student should explain

the principles of:

• secure database

connectivity

Theories: The student

should explain:

• Concepts of

database

connectivity using

PHP

Circumstantial

knowledge:

Detailed knowledge

about:

• error handling

during database

insertion (e.g.,

handling duplicate

entries, logging

failed inserts).

MariaDB).

• Sample datasets

for practice.

(b) Implementin

g retrieval

and display

of data from

a database

Brainstorm:

Guide students to

discuss the

importance of data

retrieval for dynamic

applications.

• Write PHP

scripts that

retrieve data

from a

database

using

Web

applications

that can

dynamically

retrieve and

display

Detailed knowledge

of:

Method used: The

student should explain

how to

• query and display

The following tools

and equipment are to

be available:

• Computer

• Database server

(e.g., MySQL,

72

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

Demonstration:

Show how to query a

database and display

results in HTML

tables or other

formats.

Practice: Students

create scripts to

retrieve and display

data (e.g., a product

catalog).

SELECT

queries.

• Write PHP

and HTML

scripts to

display data

in user-

friendly

formats (e.g.,

tables).

database

content (e.g.,

user profiles,

product

listings).

data from the

database

Principles: The

student should explain

the principles of:

• query

optimization for

efficient data

retrieval.

Theories: The student

should explain:

• the concepts of

indexing,

pagination, and

filtering to

manage large

datasets

effectively.

Circumstantial

knowledge:

Detailed knowledge

about:

• security concerns

like protecting

against SQL

injection in

dynamic queries.

MariaDB).

• Sample datasets

for practice.

 (c) Implementin

g updating

and deletion

of data in a

database

Brainstorm:

Guide students to

discuss the role of

update and delete

operations in

database

• Create

HTML forms

to update

database

records using

UPDATE

Interactive

forms that

allow users to

modify or

delete database

records (e.g.,

Detailed knowledge

of:

Method used: The

student should explain

how to

• write UPDATE

The following tools

and equipment are to

be available:

• Computer

• Database server

(e.g., MySQL,

73

Module Title

(Main

Competence)

Unit Title

(Specific

Competences)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested Resources

Number

of

Periods

per Unit

Process

Assessment

Services/Produ

ct Assessment

Knowledge

Assessment

management.

Demonstration:

Illustrate how to

implement these

operations using

forms (e.g., an edit

profile page).

Practice:

Guide students to

create forms that

enable data updates

and deletions.

queries.

• Implement

functionality

for deleting

records using

DELETE

queries.

• Test for

secure

handling of

sensitive

operations.

editing user

profiles or

removing

products).

and DELETE

SQL commands

embedded in PHP

scripts.

Principles: The

student should explain

the principles of:

• user

authentication and

authorization in

sensitive

operations.

Theories: The student

should explain:

• Cascading effects

of deletion in

relational

databases (e.g.,

foreign key

constraints).

Circumstantial

knowledge:

Detailed knowledge

about:

• best practices for

confirming critical

actions (e.g.,

confirmation

dialogs for

deletion).

MariaDB).

• Sample datasets

for practice.

74

Form Three

Table 5: Detailed contents for Form Three

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

1. System

analysis

and

design

1.1. Identifyi

ng and

analysin

g

software

develop

ment

requirem

ents

a) Collectin

g

requirem

ents

Brainstorm:

Guide students to

identify different

methods for

requirements collection

(such as interviews,

questionnaires,

observation, and

document analysis).

Role-Playing:

Students simulate

interactions between

stakeholders (e.g., clients

and developers) to

practice gathering

requirements.

Activity:

Students conduct mock

requirement-gathering

exercises for a given

project.

Field Study: Students

visit local businesses to

gather real-world

requirements under

guidance.

• Identify

stakeholders

and define

their roles in

requirements

collection.

• Conduct

requirement-

gathering

sessions.

• Document

requirements

in an

organized

manner.

Well-documented

requirements list

capturing

functional and

non-functional

needs, constraints,

and assumptions.

Detailed knowledge of:

Method used: The student

should explain how to

• collect requirements

through structured

techniques such as

interviews, surveys, and

focus groups

Principles: The student

should explain the principles

of:

• active listening

• stakeholder management

• thorough documentation

Theories: The student should

explain:

• Requirement Engineering

theories, such as the

Requirements Hierarchy

(functional, non-

functional, and

constraints).

Circumstantial knowledge:

Detailed knowledge about:

• Data collection challenges

like ambiguous

requirements, conflicting

stakeholder needs, and

evolving requirements

The following tools

and equipment are

to be available:

• Sample client

scenarios.

• Templates for

requirement

documentation

(e.g., System

Requirement

Specification

(SRS)

Document).

• Case studies.

90

75

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

during collection.

b) Analysin

g

requirem

ents

Demonstration:

Guide students to

categorize requirements

into functional, non-

functional, and

constraints using an

example project.

Group Discussions:

Groups collaborate to

categorize and prioritize

requirements, presenting

their findings to the

class.

Mind Mapping:

Students create visual

diagrams to explore

relationships between

requirements.

• Accurately

categorize

requirements

into

appropriate

groups.

• Validate and

prioritize

requirements

according to

project

constraints

and goals.

• Clearly

document

analysis

outcomes.

A detailed

requirements

analysis report,

including

categorized,

prioritized, and

validated

requirements.

Detailed knowledge of:

Method used: The student

should explain how to

• categorize requirements

(such as functional, and

non-functional).

Principles: The student

should explain the principles

of:

• aligning with project

objectives and traceability

of requirements.

Theories: The student should

explain:

• requirements

engineering process

• requirements validation

(e.g., feasibility,

consistency,

completeness)

Circumstantial knowledge:

Detailed knowledge about:

• scenarios requiring trade-

offs between requirements

and practical solutions for

resolving conflicts.

The following tools

and equipment are

to be available:

• Case studies on

real-world

requirement

analysis.

• Tools like

mind-mapping

software

(Lucidchart,

XMind).

 c) Modellin

g use

cases

Demonstration:

Demonstrates how to

create a basic use case

• Identify

actors and

their

Complete and

accurate use case

diagrams, with

Detailed knowledge of:

Method used: The student

should explain how to

The following tools

and equipment are

to be available:

76

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

diagram using UML

tools.

Activity and Practice:

Students individually

identify actors and use

cases for a given

scenario.

Project-Based

Learning: Students

work on a small project

(e.g., attendance tracking

system) to develop use

case diagrams.

Peer Teaching: Pairs of

students collaborate on

creating and reviewing

use case diagrams.

Think-Pair-Share:

Students brainstorm use

case scenarios, discuss in

pairs, and share with the

class.

interactions

with the

system.

• Develop

accurate use

case

descriptions

and

diagrams.

• Validate

diagrams

with peers or

stakeholders.

detailed

descriptions that

cover various

system

interactions and

scenarios.

• model use case using

UML standards.

Principles: The student

should explain the principles

of:

• simplicity, stakeholder

validation, and

completeness.

Theories: The student should

explain:

• Concepts of Unified

Modeling Language

(UML) framework.

Circumstantial knowledge:

Detailed knowledge about:

• edge cases and system

interactions

• Computer with

UML

diagramming

tools (e.g.,

Lucidchart,

Visio, Draw.io).

• Examples of

completed use

case diagrams

and scenarios

1.2. Building

structure

s of the

software

a) Designin

g system

architect

ure

Brainstorm:

Guide students to define

systems architectures

and diagramming tools.

Demonstration:

Illustrates the process of

designing architecture

diagrams for a real-world

system using examples

like an e-commerce

application.

• Create basic

architecture

diagrams

showing key

components

and their

interactions.

• Design

architectures

based on

scalability,

Well-documented

system

architecture

diagrams that

outline

components,

interactions, and

deployment

environments.

Detailed knowledge of:

Method used: The student

should explain how to

• justify the architectural

designs.

Principles: The student should

explain the principles of:

• modularity, scalability,

and maintainability.

Theories: The student should

explain:

The following tools

and equipment are

to be available:

• Computer with

Diagramming

tools (e.g.,

Lucidchart,

Draw.io,

Microsoft

Visio).

• Case studies or

90

77

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

Activity and Practice:

Students create simple

system architecture

diagrams for given

scenarios (e.g., a library

management system).

Group Discussion:

Groups brainstorm and

draft potential

architectures for a case

study.

reliability,

and

efficiency.

• concepts like multi-tier

architecture (e.g., client-

server, 3-tier systems).

• architectural patterns such

as MVC, microservices,

and layered architecture.

Circumstantial knowledge:

Detailed knowledge about:

• trade-offs in design, such

as cost versus scalability

or performance.

templates of

system

architecture.

b) Designin

g data

models

Brainstorm:

Guide students on the

design data models such

as the ERD, and class

diagrams

Demonstration:

Showcase the process of

creating an ERD using a

database scenario (e.g.,

online bookstore).

Activity and Practice:

Students develop ERDs

and translate them into

relational schema.

Project-Based

Learning: Students

design a database model

for a mini-project (e.g.,

school attendance

system).

• Identify

entities,

attributes,

and

relationships

• Translate

ERDs into

normalized

tables and

relational

schema.

• Use

appropriate

notations and

conventions.

Completed ERDs

and relational

schemas that

correctly represent

the data structure

and relationships.

Detailed knowledge of:

Method used: The student

should explain how to

• develop data models

using ERDs

Principles: The student should

explain the principles of:

• eliminating redundancy

and ensuring data

integrity.

Theories: The student should

explain:

• database design principles

and data modeling

techniques.

Circumstantial knowledge:

Detailed knowledge about:

• Best practices in

designing ERD

The following tools

and equipment are

to be available:

• Computers with

ERD tools (e.g.,

MySQL

Workbench,

Lucidchart).

• Examples of

ERDs and

relational

schemas for

practice.

78

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

Peer Teaching: Students

exchange designs,

review each other’s

work, and provide

constructive feedback.

Think-Pair-Share:

Students individually

design a partial data

model, pair up to refine

it, and share results with

the class.

c) Designin

g user

interface

Demonstration:

Demonstrates how to

sketch wireframes and

prototypes for a basic

interface (e.g., login

page).

Activity and Practice:

Students sketch

wireframes for specific

scenarios, like an online

booking system.

Role-Playing: Students

act as users to test peers’

prototypes and give

feedback.

Group Work: Teams

collaborate to create low-

fidelity and high-fidelity

prototypes using design

tools.

Brainstorming:

Groups discuss and

• Create

wireframes or

prototypes

based on

given

requirements.

• Address user-

centered

design

principles

(e.g.,

usability,

accessibility).

• Refine

designs based

on peer/user

feedback.

Completed

wireframes or

prototypes that

demonstrate

functionality,

usability, and

aesthetic appeal.

Detailed knowledge of:

Method used: The student

should explain how to

• create system wireframes

and prototypes

• interpret wireframes and

prototypes

Principles: The student should

explain the principles of:

• user-centered design,

accessibility, and

consistency.

Theories: The student should

explain:

• UI/UX design principles

and heuristics

Circumstantial knowledge:

Detailed knowledge about:

• common design mistakes

and how to fix them (e.g.,

cluttered interfaces, poor

navigation).

The following tools

and equipment are

to be available:

• Computer with

prototyping

tools (e.g.,

Figma, Adobe

XD, Balsamiq).

• Examples of

wireframes and

UI designs.

• Sample user

personas.

79

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

propose ideas for

improving an existing

interface (e.g., a sample

webpage).

2. Web

program

ming

framewor

ks

2.1. Identifyi

ng and

setting

up a web

develop

ment

environ

ment

a) Identifyi

ng web

framewo

rks

Brainstorm:

Guide students to to

identify popular web

frameworks (e.g.,

Django, Laravel, React,

Angular).

Group Discussion:

Students discuss the pros

and cons of different

frameworks based on

specific project

requirements.

Case Studies:

Analyze case studies of

real-world applications

built with different

frameworks.

• Identify key

features of

various

frameworks.

Compare

frameworks

in terms of

usability,

scalability,

and

popularity.

A list or report

comparing at least

three frameworks,

detailing features,

advantages, and

drawbacks.

Detailed knowledge of:

Method used: The student

should explain how to

• categorize frameworks

(e.g., front-end, back-end,

full-stack).

Principles: The student

should explain the principles

of:

• considerations when

choosing frameworks,

such as community

support, ease of learning,

and performance.

Theories: The student should

explain:

• the concepts of web

development frameworks

• MVC architecture and its

role in web development

frameworks.

Circumstantial knowledge:

Detailed knowledge about:

• project needs

considerations

The following tools

and equipment are

to be available:

• Computer with

internet access

to official

documentation

of frameworks

(e.g., Django,

Laravel, React,

Angular).

• Online tools for

popularity

comparison

(e.g., Google

Trends).

45

b) Setting

up web

develop

ment

Demonstration:

Demonstrate installation

of tools like code editors

(VS Code), package

• Install and

configure

tools like

editors,

Fully configured

development

environment,

including installed

Detailed knowledge of:

Method used: The student

should explain

• popular development

The following tools

and equipment are

to be available:

• Computer

80

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

tools managers (npm, pip),

and version control (Git).

Activity and Practice:

Students install and

configure essential tools

on their systems.

Peer Teaching:

Students share tips and

tricks for configuring

tools efficiently.

Interactive Workshops:

Hands-on sessions for

configuring development

environments in different

operating systems.

package

managers,

and version

control.

• Use tools to

manage basic

projects.

tools and initial

settings.

tools and their

functionalities.

Principles: The student

should explain the principles

of:

• cross-platform

compatibility and ease of

use.

Theories: The student should

explain:

• the concepts of web

development tools

• role of version control and

dependency management

in team-based projects.

Circumstantial knowledge:

Detailed knowledge about:

• environment

compatibility issues and

solutions (e.g., Docker).

• Tutorials and

guides for tool

installation and

configuration of

tools such as

VS Code, Git,

npm

• Virtual

environments.

c) Performi

ng

installati

on and

configur

ation of

a

framewo

rk

Demonstration:

Illustrate step-by-step

framework installation

and configuration (e.g.,

Django setup with pip,

Laravel with Composer).

Activity and Practice:

Students install and

configure a selected

framework individually.

Role-Playing: Students

take turns acting as

instructors to guide peers

• install the

chosen

framework.

• Configure

basic settings

such as

project

structure and

dependencies

.

A functional

development

environment with

a framework

installed

Detailed knowledge of:

Method used: The student

should explain how to

• setup procedures for

frameworks like Django,

React, or Laravel.

Principles: The student

should explain the principles

of:

• proper installation

practices, including

version management

Theories: The student should

The following tools

and equipment are

to be available:

• Computer

• Framework

documentation.

• Sample

installation

guides.

81

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

through the setup

process.

Troubleshooting

Sessions: Guide students

to identify and resolve

common errors during

installation.

explain:

• frameworks interaction

with underlying platforms

and dependencies.

Circumstantial knowledge:

Detailed knowledge about:

• troubleshooting tips for

common errors (e.g.,

dependency conflicts,

missing configurations).

d) Creating

a basic

project

Demonstration:

Create a simple project

(e.g., a “Hello World”

web app) using a

selected framework.

Activity and Practice:

Students create their own

basic projects following

instructions.

Group Work:

Students work in teams

to enhance their basic

projects by adding

simple features (e.g.,

form handling, basic

styling).

Think-Pair-Share:

Students discuss

challenges faced during

project creation and

share solutions.

• Create and

run a basic

project within

the

framework.

• Apply basic

framework

features (e.g.,

routing,

rendering) to

the created

project.

A simple working

project

demonstrating the

use of the

framework’s

features (e.g.,

rendering a page,

handling routes).

Detailed knowledge of:

Method used: The student

should explain

• steps to start a project,

including setting up

directories,

configurations, and initial

code.

• Verify functionality of the

installed framework by

running a test project

Principles: The student

should explain the principles

of:

• simplicity and

functionality in the initial

project.

Theories: The student should

explain:

• basic framework features

(e.g., routing, rendering)

Circumstantial knowledge:

Detailed knowledge about:

The following tools

and equipment are

to be available:

• Computer with

installed

framework

• Examples of

basic projects.

• Development

tools with live

server

capabilities.

82

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

• debugging, testing, and

iteration phases of the

SDLC

2.2. Building

the

front-

end

using a

framewo

rk

a) Implement

ing

componen

ts and

layouts

Demonstration:

Showcase how to create

components and define

layouts in a framework

(e.g., React, Angular,

Vue).

Activity and Practice:

Students build

predefined components

and layouts individually.

Group Work:

Students collaborate to

design a page layout

using reusable

components.

Case Study Analysis:

Analyze real-world

websites and discuss

their component

structure and layout

strategies.

Project-Based

Learning:

Students implement

components for specific

use cases, such as

navigation bars or

carousels.

• Create

reusable

components

within the

framework.

• Design and

implement

responsive

layouts using

framework-

specific

features.

Functional

webpage with

reusable

components (e.g.,

headers, footers,

cards) and

responsive

layouts.

Detailed knowledge of:

Method used: The student

should explain how

• front-end frameworks

(e.g., React, Angular) use

component-based

architecture.

Principles: The student

should explain the principles

of:

• modularity, reusability,

and responsiveness.

Theories: The student should

explain:

• concept of component

hierarchies

• the role of state

management in layouts.

Circumstantial knowledge:

Detailed knowledge about:

• challenges such as

maintaining consistency

across components and

optimizing layout

performance.

The following tools

and equipment are

to be available:

• Computer with

front-end web

framework

tools (e.g.,

React, Angular,

Vue).

• Sample web

systems for

practice.

90

b) Performin Demonstration: • Customize A webpage with Detailed knowledge of: The following tools

83

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

g

customisat

ion of

styles

Illustrate how to use CSS

frameworks (e.g.

Bootstrap),

preprocessors (e.g., Sass,

LESS), or framework-

specific style

configurations.

Interactive Workshops:

Hands-on sessions to

customize themes,

colors, and typography.

Brainstorming: Guide

students to design

improvements on

existing systems and

implement them through

style customization.

Role-Playing: Students

act as developers

addressing client

requests for

customizations.

styles using

CSS, inline

styles, or

framework-

specific

utilities.

• Apply

consistent

themes across

components.

customized styles,

including

modified colors,

typography, and

spacing, adhering

to a theme or

branding.

Method used: The student

should explain how to

• use of CSS frameworks

(e.g., Tailwind, Bootstrap)

for styling.

Principles: The student

should explain the principles

of:

• best practices for styling.

Theories: The student should

explain:

• concepts of separation of

concerns in design

(content vs. presentation).

Circumstantial knowledge:

Detailed knowledge about:

• trade-offs between inline

styles and external

stylesheets

• handling conflicting

styles.

and equipment are

to be available:

• Computer with

front-end web

framework

tools (e.g.,

React, Angular,

Vue).

• Tools like

Sass/LESS

compilers.

• Prebuilt

templates.

 c) Implement

ing user

interaction

s

Demonstration:

Demonstrate how to add

interactivity using event

listeners, states, and

hooks (e.g., React

useState/useEffect).

Activity and Practice:

Students implement

interactivity such as form

validation, modals, or

• Add

interactivity

features like

hover effects,

event-driven

updates, and

user feedback

mechanism.

• Handle user

interactions

A fully interactive

webpage with

features such as

dynamic content

updates, event

handling, and

smooth user

experiences.

Detailed knowledge of:

Method used: The student

should explain how

• DOM handles events,

state changes, and

animations.

Principles: The student

should explain the principles

of:

• usability and performance

The following tools

and equipment are

to be available:

• Computer with

front-end web

framework

tools (e.g.,

React, Angular,

Vue).

• Debugging

84

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

dropdown menus.

Think-Pair-Share:

Students pair up to

discuss their

implementation

challenges and solutions.

Game-Based Learning:

Use interactive coding

challenges to test event

handling and dynamic

updates.

with dynamic

responses.

• Debug issues

related to

interactivity

implementati

on.

in interactive designs.

Theories: The student should

explain:

• event propagation,

binding, and state

management.

Circumstantial knowledge:

Detailed knowledge about:

• accessibility concerns

• cross-browser

compatibility issues in

user interactions.

tools (e.g.,

Chrome

DevTools).

• Framework-

specific event-

handling

guides.

• Libraries for

animations

(e.g., GSAP).

2.3. Building

the

back-

end

using a

framewo

rk

a) Implemen

ting

routing

and

handling

of user

requests

Demonstration:

Demonstrate how to

define routes and handle

HTTP methods (GET,

POST, PUT, DELETE)

using a back-end

framework (e.g.,

Laravel, Express.js,

Django, Flask).

Activity and Practice:

Students create APIs

with basic routes and test

them with tools like

Postman.

Case Study Analysis:

Analyze the routing

structure of an existing

sample web based

system.

Group Work:

Students work in pairs to

• Create and

define routes

for handling

user requests.

• Test routes

with sample

requests and

ensure

correct

response

handling.

Functional server-

side application

that handles user

requests and sends

appropriate

responses (e.g.,

JSON, HTML).

Detailed knowledge of:

Method used: The student

should explain how

• routing works in

frameworks and the

importance of RESTful

principles.

Principles: The student

should explain the principles

of:

• clean URL structures,

efficient routing, and error

handling.

Theories: The student should

explain:

• client-server architecture

and HTTP protocol.

Circumstantial knowledge:

Detailed knowledge about:

• debugging routing errors

and managing dynamic

The following tools

and equipment are

to be available:

• Computer with

a working front-

end of the

system

• Frameworks

like Laravel,

Express.js,

Django.

• Framework

documentation.

• Local/remote

server setups

135

85

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

debug routing issues and

optimize route

performance.

routes with parameters.

b) Implemen

ting

interactio

n with

databases

Demonstration:

Illustrate how to connect

back-end frameworks

with relational databases

and use Object

Relational Mapping

(ORM) tools like

Sequelize, Django ORM,

or Mongoose.

Activity and Practice:

Students build CRUD

functionality to interact

with a database.

Game-Based Learning:

Students participate in

coding challenges to

create optimized

database queries.

• Establish

database

connections

using back-

end

frameworks

features.

• Implement

basic CRUD

operations.

• Optimize

database

queries for

performance.

Database-driven

web applications

with fully

functional CRUD

operations and

efficient query

handling.

Detailed knowledge of:

Method used: The student

should explain

• role of databases in web

applications and the

integration process.

Principles: The student

should explain the principles

of:

• Modular, secure, and

scalable back-end

architecture

Theories: The student should

explain:

• concepts of database

schemas, relationships,

and query optimization.

Circumstantial knowledge:

Detailed knowledge about:

• challenges like handling

large datasets,

maintaining data integrity,

and resolving connection

issues.

The following tools

and equipment are

to be available:

• Computer

• Database

servers (e.g.,

MySQL).

• ORM libraries.

• Sample datasets

for practice.

c) Implemen

ting

authentica

tion and

authorisat

ion

Demonstration:

Demonstrate how to set

up user authentication

and role-based access

control using

frameworks like

• Create secure

login and

registration

systems.

• Implement

role-based

A secure

application that

authenticates

users, handles

sessions or tokens

and enforces role-

Detailed knowledge of:

Method used: The student

should explain how

• authentication and

authorization in securing

applications is carried out.

The following tools

and equipment are

to be available:

• Computer with

a web-based

systematically

86

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

Passport.js (Node.js) or

Django’s authentication

system.

Activity and Practice:

Students implement

secure login, registration,

and role-based access

systems.

Case Study Analysis:

Review the security

architecture of an

existing sample web

application.

access

control for

different user

types.

based access. Principles: The student

should explain the principles

of:

• security best practices like

hashing, salting, and

avoiding hardcoding

credentials.

Theories: The student should

explain:

• the concepts of techniques

of Authentication and

Authorization

• session management,

token-based

authentication.

Circumstantial knowledge:

Detailed knowledge about:

• real-world Authentication

and Authorization

challenges like brute force

attacks, session hijacking

• Libraries like

Passport.js,

JWT.

• Security testing

tools.

• Online

resources for

best practices.

3.

Basics of

object-

oriented

programming

3.1

Creating

basic

programs

using classes

and objects

a) Defining

classes

and

creating

objects

Demonstration: Show

how to define classes

and create objects in a

programming language.

Hands-On Practice:

Assign tasks requiring

students to define their

own classes, add

attributes and methods,

and create multiple

objects from those

The student

should be able to:

• Define

classes with

appropriate

attributes and

methods.

• Use

constructors

to initialize

objects.

• Create and

Classes are

defined with

logically

structured

attributes and

methods, and

objects are

created.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Define classes and

initialize attributes.

• Create and manipulate

objects to perform

specific tasks.

• Use methods within

classes to implement

functionality.

The following tools

and equipment are

to be available:

• Computers with

programming

environments

(e.g., Python,

Java, C++).

• Sample

problems for

defining and

54

87

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

classes.

Interactive Tutorials:

Provide guided examples

demonstrating the syntax

and structure of classes

and objects

Case Studies: Analyze

real-world applications

of object-oriented

programming (OOP) to

highlight the significance

of classes and objects in

program design.

use objects

effectively to

perform

tasks.

Principles: The student

should explain the principle

of:

• Object-oriented

programming.

• The relationship between

classes and objects in

designing reusable code.

• Code organisation and

reuse through object-

oriented design.

Theories: The trainee should

explain:

The trainee should explain:

• How objects represent

real-world entities in

programming.

• The role of classes as

blueprints for objects.

Circumstantial knowledge

Detailed knowledge about:

• Common errors in

defining and using classes

and objects and how to

resolve them.

• Best practices for naming

classes, attributes, and

methods.

using classes

and objects.

• Tutorials on

class and object

definitions in

OOP languages.

• Case studies

showcasing

object-oriented

program design.

• Exercises

focusing on

creating and

debugging

classes and

objects.

 b) Organisin

g

Demonstration: Show

how constructors are

The student

should be able to:

Constructors are

correctly

Detailed knowledge of:

Methods: The trainee should

The following tools

and equipment are

88

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

programs

using

construct

ors

defined and used in a

programming language

to initialise objects.

Hands-On Practice:

Assign exercises where

students create classes

with constructors to

initialise attributes and

ensure the objects

function correctly.

Interactive Tutorials:

Provide step-by-step

examples illustrating

parameterised and

default constructors.

Problem-Solving

Activities: Challenge

students to design classes

that use constructors to

handle different

initialisation scenarios,

such as passing data

dynamically.

• Define

constructors

with proper

syntax and

initialise

attributes.

• Use

constructors

to create and

initialise

objects

dynamically.

• Incorporate

constructors

effectively in

organizing

class

functionality

implemented and

used to initialise

objects to meet

problem

requirements and

adhere to object-

oriented

principles.

explain how to:

• Define constructors in

classes with and without

parameters.

• Use constructor

overloading to handle

multiple initialisation

scenarios.

• Incorporate constructors

in program design for

object creation.

Principles: The student

should explain the principle

of:

• Object initialization using

constructors.

Theories: The trainee should

explain:

The trainee should explain:

• The role of constructors in

managing object states.

• The advantages of using

constructors over direct

attribute assignment.

Circumstantial knowledge

Detailed knowledge about:

• Common errors in

constructor

implementation and how

to be available:

• Computers with

programming

environments

installed (e.g.,

Python, Java,

C++).

• Sample

problems for

defining and

using

constructors

effectively.

• Tutorials on

constructors

and their

applications in

OOP.

• Case studies

showcasing

real-world uses

of constructors.

• Exercises

focusing on

constructor

overloading,

debugging, and

advanced usage.

89

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

to resolve them.

• Best practices for

designing and organizing

constructors in classes.

 c) Construct

ing real-

world

models

using

classes

and

objects

Demonstration: Show

how to design and

implement real-world

models using classes and

objects.

Hands-On Practice:

Assign tasks where

students create real-

world class models, such

as a Car, Student, or

BankAccount,

incorporating attributes

and methods.

Interactive Tutorials:

Provide guided examples

that demonstrate

modeling real-world

entities on the

relationships between

classes and objects.

Problem-Solving

Activities: Present

scenarios where students

need to design object-

oriented solutions for

real-world problems

The student

should be able to:

• Identify and

translate real-

world entities

into classes

and objects.

• Design

classes with

appropriate

attributes and

methods

representing

real-world

functionality.

• Implement

relationships

between

classes, such

as inheritance

and

associations.

Classes and

objects that

represent real-

world entities

accurately per

object-oriented

principles are

constructed.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Design class diagrams for

real-world models.

• Implement attributes and

methods representing

real-world properties and

behaviors.

• Build relationships

between classes to

represent associations and

inheritance.

Principles: The student

should explain the principle

of:

• Object-oriented

programming (OOP)

concepts.

• Designing reusable code

using classes and objects.

• Real-world problem-

solving through object

modeling.

Theories: The trainee should

explain:

The trainee should explain:

The following tools

and equipment are

to be available:

• Computers with

programming

environments

installed (e.g.,

Python, Java,

C++).

• Diagramming

tools for class

and object

modeling (e.g.,

Lucidchart,

Draw.io).

• Sample

problems for

designing and

implementing

real-world

models.

• Tutorials on

object-oriented

modeling and

design.

• Case studies

showcasing

real-world

90

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

• How real-world entities

can be abstracted into

classes and objects.

Circumstantial knowledge

Detailed knowledge about:

• Common design patterns

for modeling real-world

scenarios in OOP.

• Applications of OOP in

real-world industries.

implementation

s of OOP

principles.

• Exercises

focusing on

multi-class

systems and

real-world

problem-

solving.

 3.2

Creating

programs

with

inheritance

and method

overriding

a) Implemen

ting

inheritanc

e

Demonstration: Show

how to create base and

derived classes,

including the use of

extends or inherit

keywords.

Hands-On Practice:

Assign tasks where

students create

inheritance hierarchies to

model real-world

relationships

Interactive Tutorials:

Provide guided examples

illustrating single and

multilevel.

Problem-Solving

Activities: Present

scenarios where

The student

should be able to:

• Create base

and derived

classes with

appropriate

attributes and

methods.

Programs

demonstrating the

proper use of

inheritance are

created.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Define base and derived

classes using inheritance.

• Use constructors in

inheritance hierarchies to

initialize base and derived

class attributes.

Principles: The student

should explain the principle

of:

• Code reuse and

modularity through

inheritance.

Theories: The trainee should

explain:

The trainee should explain:

• How inheritance

facilitates hierarchical

The following tools

and equipment are

to be available:

• Computers with

programming

environments

installed (e.g.,

Python, Java,

C++).

• Sample

problems for

practicing

inheritance and

method

overriding.

• Tutorials on

inheritance and

overriding

techniques in

different

programming

36

91

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

inheritance improves

code reuse, and ask

students to implement

solutions.

Case Studies: Analyze

programs that effectively

use inheritance and

discuss the advantages

relationships in object-

oriented programming.

• The importance of

constructors in ensuring

correct object

initialization across

inheritance hierarchies.

Circumstantial knowledge

Detailed knowledge about:

• Common pitfalls in

implementing inheritance,

such as incorrect

overriding or constructor

chaining errors.

• Real-world use cases of

inheritance, such as

modeling organizational

structures or system

components.

languages.

• Case studies

showcasing

effective use of

inheritance in

software

systems.

• Exercises

focusing on

creating and

debugging

inheritance-

based programs.

 b) Implemen

ting

overriding

parent

class

methods

Demonstration: Show

how to override methods

in derived classes.

Hands-On Practice:

Assign tasks requiring

students to override

parent class methods and

customise their behavior

in derived classes.

Interactive Tutorials:

Provide guided exercises

The student

should be able to:

• Define and

override

methods in

derived

classes.

• Use super or

base class

references to

access parent

class

functionality.

Parent class

attributes and

methods are

appropriately

overridden in

derived classes.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Override methods in

derived classes.

• Use the super keyword or

equivalent to access

parent class methods or

attributes.

Principles: The student

should explain the principle

of:

The following tools

and equipment are

to be available:

• Computers with

programming

environments

installed (e.g.,

Python, Java,

C++).

• Sample

programs and

problem sets for

92

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

focusing on method

overriding, including the

use of super or base class

references.

• Method overriding as a

means to extend or

customize parent class

functionality

Theories: The trainee should

explain:

The trainee should explain:

• How method overriding

enables dynamic

behaviour in object-

oriented programming.

• The impact of method

overriding on code

reusability.

Circumstantial knowledge

Detailed knowledge about:

• Common pitfalls in

implementing inheritance,

such as incorrect

overriding or constructor

chaining errors.

• Real-world use cases of

inheritance, such as

modeling organizational

structures or system

components.

practicing

method

overriding.

• Tutorials on

inheritance and

method

overriding in

OOP.

• Case studies

highlighting

effective use of

method

overriding.

• Exercises

focusing on

implementing

and testing

overridden

methods.

 3.3

Implementin

g

encapsulatio

n and

a) Implemen

ting

encapsula

tion of

class

Demonstration: Show

how to encapsulate class

attributes and methods

using access modifiers

(private, protected,

The student

should be able to:

• Apply

appropriate

access

Attributes and

methods are

correctly

encapsulated

using access

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Encapsulate class

attributes and methods

This element can be

achieved at school

workshop and The

following tools and

equipment are to be

36

93

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

abstraction attributes

and

methods

public).

Hands-On Practice:

Assign exercises

requiring students to

encapsulate attributes

and methods in a class

and access them via

getter and setter

methods.

Interactive Tutorials:

Provide guided examples

on encapsulation and

demonstrate its role in

securing data.

Problem-Solving

Activities: Present real-

world scenarios where

encapsulation ensures

secure and organized

program design.

modifiers to

class attributes

and methods.

• Use getter and

setter methods

to manage

attribute access

and updates.

• Implement

encapsulation

to enhance data

security

modifiers. using appropriate access

modifiers.

• Use getter and setter

methods to provide

controlled access to class

attributes.

Principles: The student

should explain the principle

of:

• Encapsulation as a means

to protect data and reduce

dependency between

components.

• Data hiding and the

separation of

implementation from

interface.

Theories: The trainee should

explain:

The trainee should explain:

• How encapsulation

improves code security

and maintainability.

• The importance of access

modifiers in

implementing

encapsulation.

• The role of getter and

setter methods in

managing data access.

available:

• Computers with

programming

environments

installed (e.g.,

Python, Java,

C++).

• Sample

problems for

practicing

encapsulation in

class design.

• Tutorials on

encapsulation

and abstraction

in OOP.

• Case studies

demonstrating

secure and

modular

program

designs using

encapsulation.

• Exercises

focusing on

implementing

and debugging

encapsulation.

94

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

Circumstantial knowledge

Detailed knowledge about:

• Common mistakes in

encapsulation and how to

avoid them.

• Best practices for

designing encapsulated

classes in real-world

applications.

 b) Implement

ing

abstractio

n of

functionali

ties using

abstract

classes

and

method

Demonstration: Show

how to define and use

abstract classes and

methods.

Hands-On Practice:

Assign tasks where

students create abstract

classes representing

general concepts and

implement concrete

methods in derived

classes.

Interactive Tutorials:

Provide guided examples

to illustrate the role of

abstraction in separating

functionality from

implementation.

Problem-Solving

Activities: Present

The student

should be able to:

• Define

abstract

classes and

methods with

appropriate

syntax.

• Implement

concrete

methods in

derived

classes,

adhering to

abstract class

requirements.

• Demonstrate

the

application of

abstraction to

improve code

structure and

consistency.

Abstract classes

and methods are

correctly defined

and implemented

in derived classes.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Define abstract classes

and abstract methods.

• Use derived classes to

implement the

functionality defined by

abstract methods.

Principles: The student

should explain the principle

of:

• Abstraction to hide

unnecessary

implementation details

and expose essential

features.

• Enforcing a consistent

interface through abstract

classes and methods.

Theories: The trainee should

The following tools

and equipment are

to be available:

• Computers with

programming

environments

(e.g., Python,

Java, C++).

• Sample projects

and problem

sets for abstract

class and

method

implementation.

• Tutorials on

abstraction in

object-oriented

programming.

• Case studies

showcasing the

role of

abstraction in

95

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

scenarios where

abstraction ensures a

consistent interface for

derived classes, such as

designing a payment

processing system.

explain:

The trainee should explain:

• How abstraction separates

"what" from "how" in

program design.

• The role of abstract

classes in creating

extensible and scalable

code.

• The importance of

adhering to interfaces

defined by abstract

classes in derived classes

Circumstantial knowledge

Detailed knowledge about:

• Common challenges in

implementing abstraction

and how to address them.

• Best practices for

designing abstract classes

in real-world applications

software design.

• Exercises

focusing on

creating,

implementing,

and debugging

abstract classes

and methods.

 3.4

Implementin

g

polymorphis

m with

interfaces

and abstract

classes

a) Designing

abstract

classes for

common

behaviour

Demonstration: Show

how to define abstract

classes and abstract

methods that enforce

common behaviour in

derived classes.

Hands-On Practice:

Assign exercises where

students design abstract

classes to encapsulate

The student

should be able to:

• Define

abstract

classes with

appropriate

attributes and

methods for

common

behavior.

• Implement

Abstract classes

and their methods

are logically

designed to

encapsulate

shared behaviour.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Design and define

abstract classes for shared

behaviors.

• Implement and override

abstract methods in

derived classes.

The following tools

and equipment are

to be available:

• Computers with

programming

environments

(e.g., Python,

Java, C++).

• Sample

problems and

54

96

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

shared behaviours and

implement these in

multiple derived classes.

Interactive Tutorials:

Provide step-by-step

examples to demonstrate

the relationship between

abstract classes and

polymorphism.

Problem-Solving

Activities: Present

scenarios where abstract

classes simplify the

design of complex

systems, such as defining

a Shape class with a

draw() method for

various shapes.

derived

classes that

inherit from

abstract

classes and

provide

specific

functionality.

Principles: The student

should explain the principle

of:

• Abstraction and its role in

enforcing consistent

behaviours across

multiple implementations.

• Code reusability through

the use of abstract classes.

Theories: The trainee should

explain:

The trainee should explain:

• How abstract classes

promote code

organization and reduce

duplication.

• The role of polymorphism

in enabling objects to

interact through common

interfaces.

• The benefits of separating

interface definitions from

implementations

Circumstantial knowledge

Detailed knowledge about:

• Best practices for

designing abstract classes

to maximize reusability

projects for

practising

abstract class

design and

polymorphism.

• Tutorials on

abstract class

design and

usage in OOP.

• Case studies

demonstrating

the use of

abstract classes

in software

systems.

• Exercises

focusing on

designing, and

debugging

systems using

abstract classes.

 b) Implemen

ting

polymorp

hism with

Demonstration: Show

how polymorphism is

achieved using abstract

classes and interfaces

The student

should be able to:

• Define

abstract

Abstract classes

and interfaces are

correctly defined

and implemented

Detailed knowledge of:

Methods: The trainee should

explain how to:

The following tools

and equipment are

to be available:

97

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

abstract

classes or

interfaces

Hands-On Practice:

Assign exercises

requiring students to

define abstract classes or

interfaces and implement

polymorphic behaviours

in derived classes.

Interactive Tutorials:

Provide guided examples

to demonstrate dynamic

method invocation using

polymorphism.

Problem-Solving

Activities: Present real-

world scenarios

requiring polymorphism,

such as designing a

payment system with

multiple payment

methods

classes or

interfaces and

their

associated

methods.

• Implement

methods in

derived

classes

adhering to

the interface.

to exhibit

polymorphism

behaviour.

• Define and implement

abstract classes or

interfaces.

• Use polymorphism to

invoke methods from

derived classes

Principles: The student

should explain the principle

of:

• Polymorphism as a means

to simplify complex

systems through

consistent interfaces.

• Abstraction and its role in

achieving polymorphism

using abstract classes and

interfaces

Theories: The trainee should

explain:

The trainee should explain:

• How polymorphism

enhances flexibility and

extensibility.

• The role of abstract

classes and interfaces in

defining common

behaviours

Circumstantial knowledge

Detailed knowledge about:

• Common errors in

• Computers with

programming

environments

installed (e.g.,

Python, Java,

C++).

• Sample projects

and exercises

for

implementing

polymorphism.

• Tutorials on

polymorphism,

abstract classes,

and interfaces

in OOP.

• Case studies

showcasing

polymorphism

in large-scale

software

systems.

• Exercises

focusing on

designing,

implementing,

and debugging

polymorphic

behavior.

98

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

implementing

polymorphism and how to

address them.

• Best practices for

designing systems using

abstract classes and

interfaces

 c) Performin

g

overriding

methods

to

implemen

t

polymorp

hic

behaviour

Demonstration: Show

how to override methods

in derived classes to

achieve polymorphism.

Hands-On Practice:

Assign exercises

requiring students to

override methods in real-

world scenarios.

Interactive Tutorials:

Provide guided examples

illustrating the dynamic

dispatch mechanism

used in polymorphism.

Problem-Solving

Activities: Present tasks

where overriding

methods in a hierarchy

of classes implements

specific behavior for

different objects.

The student

should be able to:

• Override

methods in

derived

classes

adhering to

the parent

class or

interface

contracts.

• Demonstrate

the consistent

behavior of

overridden

methods

across

different

derived

classes.

Overridden

methods are

correctly

implemented to

demonstrate

polymorphic

behavior

implementation.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Override methods in

derived classes while

maintaining consistency

with parent class

Principles: The student

should explain the principle

of:

• Method overriding to

implement polymorphic

behaviour.

• Encapsulation and

inheritance as enablers of

polymorphism.

Theories: The trainee should

explain:

The trainee should explain:

• How overriding enhances

flexibility and

customizability.

 The following tools

and equipment are

to be available:

• Computers with

programming

environments

installed (e.g.,

Python, Java,

C++).

• Sample projects

and exercises

for practicing

method

overriding and

polymorphism.

• Tutorials on

polymorphism

and method

overriding in

OOP.

• Case studies

showcasing

polymorphism

in real-world

applications.

99

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

• The impact of

polymorphism on

reducing code

duplication.

Circumstantial knowledge

Detailed knowledge about:

• Common challenges and

pitfalls in method

overriding and their

solutions.

• Best practices for

designing and

implementing

polymorphic behaviour.

• Exercises

focusing on

designing,

implementing,

and debugging

overridden

methods.

4.

Event-driven

programming

4.1

Working

with IDE

and event-

driven

language

a) Performin

g

exploratio

n of

features

and tools

of the

event-

driven

language

IDE

Demonstration: Walk

students through the

features and tools of a

popular event-driven

IDE.

Hands-On Practice:

Assign tasks requiring

students to explore and

use the key features of

the IDE

Interactive Tutorials:

Provide guided examples

demonstrating how to

create, test, and debug an

event-driven program

within the IDE.

The student

should be able to:

• Navigate and

use the

various tools

and features

of the event-

driven IDE.

• Configure the

IDE for

optimal

event-driven

programming

.

Features and tools

of the IDE are

correctly

explored.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Navigate the IDE

interface and use its tools

effectively for event-

driven programming

Principles: The student

should explain the principle

of:

• Event-driven

programming and its

reliance on an IDE for

efficient development.

• The role of IDEs in

improving code quality

and reducing development

 The following tools

and equipment are

to be available:

• Computers with

event-driven

IDEs installed

(e.g., Visual

Studio,

NetBeans,

PyCharm).

• Sample projects

for exploring

IDE features

and practicing

event-driven

programming.

• Tutorials on

using IDEs for

68

100

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

time.

Theories: The trainee should

explain:

The trainee should explain:

• How IDE tools and

features contribute to the

software development

lifecycle

Circumstantial knowledge

Detailed knowledge about:

• Common challenges in

using IDEs for event-

driven programming and

how to overcome them.

event-driven

programming.

• Case studies

showcasing

event-driven

application

development

using IDEs.

• Exercises

focusing on

debugging, UI

design, and

event handling.

 b) Creating

basic

programs

using

event-

driven

language

Demonstration: Show

how to create simple

event-driven programs

using an IDE with built-

in event-driven language

support.

Hands-On Practice:

Assign exercises to

develop basic programs

using common event-

driven constructs

The student

should be able to:

• Write and

execute basic

event-driven

programs in

an IDE.

Basic programs

principled on

event-driven

programming

paradigm are

created.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Use an IDE to create

event-driven applications.

• Design and implement

event-driven programs

that respond to user

inputs.

Principles: The student

should explain the principle

of:

• Understanding the role of

event listeners, callbacks,

and triggers in creating

responsive applications.

 The following tools

and equipment are

to be available:

• Computers or

laptops

equipped with

an IDE

supporting

event-driven

programming

(e.g., Visual

Studio,

NetBeans,

PyCharm, or

Eclipse).

• Access to

101

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

Theories: The trainee should

explain:

The trainee should explain:

• How events are queued

and processed in sequence

to handle asynchronous

user interactions.

• The phases of event

propagation and their

impact on event handling.

Circumstantial knowledge

Detailed knowledge about:

• Common challenges in

using IDEs for event-

driven programming and

how to overcome them.

sample event-

driven projects

for hands-on

practice.

• Internet

connectivity to

access online

resources,

documentation,

and tutorials.

• Tutorials or

instructional

videos on

event-driven

programming,

emphasizing

real-world use

cases.

• Case studies

highlighting

event-driven

applications

such as

graphical user

interfaces

(GUIs) and

mobile apps.

• Workbooks

with practical

exercises to

create basic

event-driven

programs.

102

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

• Reference

materials and

documentation

for the specific

programming

language used

(e.g., Python,

Java, VB.NET)

 4.2

Developing

programs

using

functions

and arrays

a) Constructi

ng

reusable

functions

Demonstration: Show

how to create reusable

functions and integrate

them into event-driven

applications.

Hands-On Practice:

Assign exercises to

design and implement

reusable functions for

specific tasks, such as

input validation or

mathematical

calculations.

Interactive Tutorials:

Provide guided examples

to demonstrate best

practices for function

design, such as

parameterisation and

return values.

Problem-Solving

Activities: Present

The student

should be able to:

• Write

functions

with

appropriate

parameters

and return

values.

• Use functions

effectively to

organize code

and reduce

redundancy.

Reusable

functions that

meet task

requirements are

correctly

implemented, and

exhibit expected

behaviour.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Define and call reusable

functions in a program.

• Pass parameters to

functions and handle

return values effectively.

Principles: The student

should explain the principle

of:

• Function modularity to

simplify code structure

and reduce duplication.

• Parameterization and how

it enhances function

reusability.

Theories: The trainee should

explain:

The trainee should explain:

• The role of functions in

improving software

The following tools

and equipment are

to be available:

• Computers with

IDEs installed

(e.g., Visual

Studio,

PyCharm,

NetBeans).

• Sample

problems for

creating and

testing reusable

functions.

• Tutorials on

function design

and

implementation

in programming

languages.

• Case studies

showcasing the

importance of

reusable

99

103

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

challenges where

students must identify

repetitive code and

refactor it into reusable

functions.

scalability and

maintainability.

• How function reusability

contributes to efficient

programming workflows.

Circumstantial knowledge

Detailed knowledge about:

• Common errors in

function design, such as

incorrect parameter usage

or scope issues, and how

to resolve them

functions in

large-scale

projects.

• Exercises to

practice

function

modularity and

parameterizatio

n.

 b) Implemen

ting

single-

dimension

al and

multi-

dimension

al arrays

Demonstration:

Illustrate the declaration,

initialisation, and

manipulation of single-

dimensional and multi-

dimensional arrays.

Hands-On Practice:

Assign exercises

requiring students to

create, populate, and

manipulate arrays for

real-world applications.

Interactive Tutorials:

Guide students step-by-

step through examples

like processing tabular

data, or handling matrix

operations.

The student

should be able to:

• Declare and

initialize

arrays using

correct

syntax.

• Access,

modify, and

process

elements

within single-

dimensional

and multi-

dimensional

arrays.

Arrays are

implemented

accurately and

meet the task

requirements.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Declare and initialize

single-dimensional and

multi-dimensional arrays.

• Access and manipulate

array elements using

loops and conditional

statements.

Principles: The student

should explain the principle

of:

• Data storage and

organization using arrays.

• Indexing in single-

dimensional and multi-

dimensional arrays for

efficient data access.

 The following tools

and equipment are

to be available:

• Computers with

IDEs installed

(e.g., Visual

Studio, Python,

Java, C++).

• Sample datasets

for practising

array

manipulations.

• Tutorials and

guides on arrays

in event-driven

programming.

• Exercises and

problem sets

focusing on

104

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

Problem-Solving

Activities: Present

challenges where

students must use arrays

for specific tasks.

• Iterative processes for

array traversal and

manipulation.

Theories: The trainee should

explain:

The trainee should explain:

• How arrays represent

structured data in

programming.

• The role of arrays in

efficient data handling

and storage.

Circumstantial knowledge

Detailed knowledge about:

• Common errors in array

operations, such as off-

by-one errors or out-of-

bound accesses, and their

solutions.

• Practical applications of

arrays in event-driven

programming and real-

world scenarios.

single-

dimensional

and multi-

dimensional

arrays.

• Case studies

showcasing the

use of arrays in

real-world

applications.

 c) Using

control

structures

to traverse

and

process

arrays

Demonstration: Show

how to use control

structures to traverse and

process single-

dimensional and multi-

dimensional arrays.

Hands-On Practice:

The student

should be able to:

• Write control

structures to

traverse

arrays

efficiently

using loops

Programs that use

control structures

effectively to

traverse and

process arrays are

created.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Use loops like for, while,

and foreach to traverse

arrays.

• Implement conditional

statements to process

The following tools

and equipment are

to be available:

• Computers with

programming

environments

(e.g., Python,

105

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

Assign exercises

requiring students to

implement control

structures to perform

tasks such as summing

array elements, searching

for specific values, and

modifying data in arrays.

Interactive Tutorials:

Provide guided examples

demonstrating common

operations like finding

the maximum/minimum

value, sorting arrays, or

calculating averages.

Problem-Solving

Activities: Present real-

world challenges where

students need to use

control structures for

array traversal and

processing.

and

conditionals.

• Implement

logic to

process

arrays, such

as filtering or

updating

data.

specific elements in

arrays.

Principles: The student

should explain the principle

of:

• Array indexing and its

role in traversal.

• Error handling during

array traversal to avoid

runtime issues.

Theories: The trainee should

explain:

The trainee should explain:

• The impact of loop

structures on the

efficiency of array

operations.

• The relationship between

control structures and

array manipulation in

solving complex

problems.

Circumstantial knowledge

Detailed knowledge about:

• Common errors in array

traversal, such as off-by-

one errors, and strategies

to resolve them.

• Best practices for using

nested loops with multi-

Java, C++)

installed.

• Sample datasets

for practicing

array traversal

and processing.

• Tutorials and

examples on

using control

structures with

arrays.

• Exercises

focusing on

tasks like

searching,

sorting, and

data

aggregation

using arrays.

• Case studies

showcasing the

use of control

structures and

arrays in event-

driven

applications.

106

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

dimensional arrays.

 4.3

Designing

form with

menus

controls

a) Designing

forms

with basic

controls

Demonstration: Show

how to design forms

using an IDE with built-

in form designer tools.

Demonstrate how to add

and configure basic

controls like text boxes,

labels, buttons, and

dropdown menus.

Hands-On Practice:

Assign exercises where

students create simple

forms with various

controls and define their

properties (e.g., size,

position, color, and event

handlers).

Interactive Tutorials:

Provide step-by-step

tutorials that guide

students in designing

forms with real-world

use cases, such as login

forms, contact forms, or

search interfaces.

Problem-Solving

Activities: Present

scenarios requiring

students to design and

The student

should be able to:

• Add,

configure,

and align

basic controls

on a form.

Forms with basic

controls are

designed with

intuitive, user-

friendly layouts

tailored to meet

specific task

requirements.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Add and configure

controls like text boxes,

labels, buttons, and menus

on a form.

• Use properties and events

to customize control

behavior.

Principles: The student

should explain the principle

of:

• Form design, focusing on

usability, accessibility,

and user interaction.

• Layout alignment and

spacing for clear and

organized forms.

Theories: The trainee should

explain:

The trainee should explain:

• How event-driven

programming enables

interactive forms.

• The importance of user-

centered design in form

development.

The following tools

and equipment are

to be available:

• Computers with

IDEs

supporting form

design.

• Sample projects

and exercises

for practising

form design.

• Tutorials and

guides on

designing forms

and adding

controls.

• Exercises and

problem sets

focusing on

form layout and

alignment.

• Case studies

showcasing best

practices in

form design for

real-world

applications.

81

107

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

implement forms for

specific applications,

such as a product order

form or a customer

feedback interface.

Circumstantial knowledge

Detailed knowledge about:

• Common challenges in

form design, such as

misaligned controls or

unhandled events, and

their solutions.

• Best practices for

designing forms that

enhance user experience.

• Real-world applications

of form design in data

entry, user registration,

and search interfaces.

 b) Incorporat

inge

menus to

forms

Demonstration: Show

how to add menus to an

already created form.

Highlight menu

customisation options

(e.g. renaming menu

items, adding separators.

Hands-On Practice:

Assign exercises where

students add menus to

existing forms (e.g., a

File menu or an Edit

menu).

Peer Reviews:

Encourage students to

review and provide

The student

should be able to:

• Add and

customize

menus on an

existing form

Appropriate

menus are

properly

incorporated to

forms.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Add menus to an existing

form.

• Define and configure

properties for menu items.

Principles: The student

should explain the principle

of:

• Organizing menu items to

improve usability and

navigation.

• Linking menus to form

functionality for a

cohesive user experience.

The following tools

and equipment are

to be available:

• Computers with

IDEs that

support form

and menu

integration.

• Sample forms

for adding and

testing menus.

• Tutorials and

guides on menu

integration into

existing forms.

• Exercises

focusing on

108

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

feedback on each other's

menu designs for an

existing form.

Interactive Tutorials:

Provide step-by-step

tutorials on integrating

menus into a form.

Problem-Solving

Activities: Present

challenges requiring

students to enhance

existing forms by

incorporating menus

Theories: The trainee should

explain:

The trainee should explain:

• The role of menus in

enhancing form

interactivity and

functionality.

• The relationship between

event-driven

programming and menu

interactions.

• The importance of logical

grouping and hierarchy in

menu design.

Circumstantial knowledge

Detailed knowledge about:

• Common challenges in

integrating menus into

existing forms

• Best practices for

maintaining consistency

between menus and form

functionality

adding and

customizing

menus for

enhanced

functionality.

• Case studies

showcasing

applications

with well-

designed

menus.

 c) Implemen

ting menu

items to

execute

specific

tasks

Brainstorming:

Facilitate group

brainstorming sessions to

identify potential user

interactions and their

corresponding event-

handling logic for

specific controls.

The student

should be able to:

• Define menu

items and

link them to

event

handlers to

execute

specific

Menu items are

appropriately

linked to specific

task for execution.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Create and configure

menu items to execute

tasks.

• Attach event handlers to

menu items for task

execution.

The following tools

and equipment are

to be available:

• Computers with

IDEs

supporting

menu creation

and event

109

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

Demonstration:

Showcase how to attach

event handlers to

controls (e.g. buttons,

checkboxes, and

dropdown menus).

Demonstrate how event

handlers respond to

specific actions (e.g.,

clicking, selecting, or

hovering).

Problem-Solving

Activities: Present real-

world scenarios where

students must design

forms with controls and

implement event

handling.

Interactive Tutorials:

Guide students step-by-

step in creating event-

driven programs with

functional controls.

Hands-On Practice:

Assign exercises

requiring students to

implement event

handlers for different

controls on forms

tasks.

• Optimise

menu

structures for

usability and

task

accessibility.

Principles: The student

should explain the principle

of:

• Event-driven

programming in linking

user interactions (menu

clicks) to actions.

• Usability in designing

menu structures and

naming menu items.

Theories: The trainee should

explain:

The trainee should explain:

• How event handlers

enable task execution in

response to menu

interactions.

• The role of logical

grouping of menu items to

enhance user navigation.

Circumstantial knowledge

Detailed knowledge about:

• Challenges in

implementing menu tasks,

such as unresponsive

items or incorrect task

execution, and their

solutions.

• Best practices for

organising menu items to

handling (e.g.,

Visual Studio,

NetBeans).

• Sample projects

for practicing

menu

implementation

and task

linking.

• Tutorials on

designing

menus and

programming

their tasks.

• Exercises

focusing on

creating menus

for specific

real-world

applications.

• Case studies

illustrating

effective menu

implementation

in popular

software.

110

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

maximise efficiency and

accessibility

 d) Implemen

ting event

handling

for

controls

Brainstorming:

Facilitate group

brainstorming sessions

where students ideate

menu functionalities and

how they can link to

real-world application

needs.

Demonstration: Show

how to create menu

items and link them to

specific event handlers

for executing tasks, such

as opening files, saving

data, or exiting the

application, using an

IDE.

Hands-On Practice:

Assign exercises where

students design forms

with menu items and

program them to execute

specific tasks

Interactive Tutorials:

Guide students step-by-

step in implementing

menus for real-world

tasks.

The student

should be able to:

• Attach and

configure

event

handlers for

various

controls.

• Implement

logic within

event

handlers to

perform

specific

actions.

• Test event-

handling

mechanisms

to ensure

correct

functionality

Controls are

handled to

respond

accurately to user

interactions with

appropriate

actions.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Attach event handlers to

controls programmatically

or using GUI tools.

• Write logic within event

handlers to perform

specific tasks.

Principles: The student

should explain the principle

of:

• Event-driven

programming and its

reliance on event listeners

and handlers.

• User interaction and

control responsiveness for

creating interactive forms.

Theories: The trainee should

explain:

The trainee should explain:

• How event-handling logic

enables dynamic

interaction between users

and controls.

• The importance of

separating UI elements

from event-handling logic

The following tools

and equipment are

to be available:

• Computers with

IDEs

supporting

event handling

(e.g., Visual

Studio,

NetBeans,

Eclipse).

• Sample forms

with pre-

designed

controls for

practice.

• Reference

documentation

for

programming

languages (e.g.,

Python, Java,

C++).

• Tutorials on

event handling

for various

controls in

event-driven

programming.

• Case studies

111

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

Problem-Solving

Activities: Present

scenarios where students

must design menus to

manage specific tasks

Peer Reviews: Have

students present their

menu designs and

functionality to peers for

constructive feedback

and improvement

suggestions.

to maintain program

clarity.

Circumstantial knowledge

Detailed knowledge about:

• Programming language-

specific syntax and

libraries for event

handling.

• Strategies for preventing

and handling errors.

• Designing user-friendly

and intuitive interactions.

• Handling multiple events

on a single control, such

as mouse clicks and key

presses.

demonstrating

effective event-

driven form

designs.

• Exercises to

practice

attaching and

testing event

handlers.

 4.4

Creating

database

connectivity

options and

reporting

a) Establishi

ng a

connectio

n of

event-

driven

programs

to a

database

Demonstration: Show

how to set up database

connections using

programming languages

and libraries.

Hands-On Practice:

Assign exercises where

students establish

connections to databases.

Interactive Tutorials:

Guide students through

the process of integrating

databases with event-

driven programs step-by-

The student

should be able to:

• Configure

database drivers

and establish a

connection in

the

programming

environment.

A stable and

secure connection

to the database is

created.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Set up database drivers

and integrate them into

the development

environment.

Principles: The student

should explain the principle

of:

• Database connectivity,

including connection

pooling and driver

configuration.

• Secure access to

The following tools

and equipment are

to be available:

• Computers with

IDEs

supporting

event-driven

programming

(e.g., Visual

Studio,

NetBeans,

Eclipse).

• Database

Management

Systems like

67

112

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

step.

Problem-Solving

Activities: Present real-

world challenges

requiring database

integration.

Brainstorming:

Facilitate group

discussions to identify

potential use cases for

database connectivity in

event-driven programs.

databases, including

authentication and

permissions.

Theories: The trainee should

explain:

The trainee should explain:

• Concepts on handling

exceptions during

database connections and

operations to avoid

application crashes

• How database drivers

(e.g., JDBC, ODBC)

bridge the application and

the database.

Circumstantial knowledge

Detailed knowledge about:

• Managing connections in

applications and handling

multiple concurrent users.

• Configuring timeouts and

retries to maintain

connection stability.

MySQL,

PostgreSQL,

SQLite, or MS

SQL Server for

hands-on

practice.

• Integrated

Development

Environments

(IDEs) tools

such as

PyCharm,

Visual Studio,

or NetBeans

that support

database

integration.

 b) Performin

g basic

CRUD

operations

using

SQL

queries

Demonstration: Show

how to perform CRUD

operations (Create, Read,

Update, Delete) using

SQL queries through an

IDE.

Hands-On Practice:

Assign exercises

The student

should be able to:

• Write and

execute SQL

queries for

CRUD

operations.

• Link CRUD

operations to

CRUD operations

using SQL are

performed

accurately to meet

user needs.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Write SQL queries for

basic CRUD operations.

• Use event-driven

programming to integrate

CRUD functionality.

 The following tools

and equipment are

to be available:

• Computers

installed with

programming

IDEs (e.g.,

PyCharm,

113

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

requiring students to

perform CRUD

operations.

Problem-Solving

Activities: Present

scenarios where students

need to design a database

schema and implement

CRUD operations for

real-world applications.

Brainstorming:

Facilitate discussions on

the types of data

commonly stored in

databases and how

CRUD operations can be

designed for specific

application needs.

Group Projects:

Encourage students to

collaboratively design

and implement CRUD-

enabled applications,

such as an online

registration system.

event

handlers in

an event-

driven

program.

Principles: The student

should explain the principle

of:

• Data manipulation and its

importance in application

functionality.

• SQL as a language for

interacting with relational

databases.

Theories: The trainee should

explain:

The trainee should explain:

• How CRUD operations

enable dynamic and

interactive application

behaviour.

Circumstantial knowledge

Detailed knowledge about:

• Various data types used in

database tables and their

application.

• Designing user-friendly

forms to trigger CRUD

operations.

Visual Studio,

NetBeans).

• Database

Management

Systems (e.g.,

MySQL,

PostgreSQL,

SQLite, MS

SQL Server).

• Sample

databases for

practising

CRUD

operations (e.g.,

student records,

inventory

systems).

• SQL query-

building tools

(e.g., MySQL

Workbench,

phpMyAdmin,

DBeaver).

• Tutorials on

SQL and

CRUD

operations.

• Exercises

focusing on

performing

CRUD

operations and

integrating

114

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

them with

event-driven

programs.

• Case studies

showcasing

applications

leveraging

CRUD

functionality.

 c) Showing

database

records on

forms

Brainstorming:

Facilitate group

discussions to explore

innovative ways to

represent database

records visually, such as

charts, tables, or

summary panels.

Demonstration: Show

how to fetch records

from a database and

display them

dynamically on forms

using event-driven

programming

techniques.

Demonstrate examples

using controls like data

grids, list views, or text

fields.

Hands-On Practice:

Assign exercises where

The student

should be able to:

• Write SQL

SELECT

queries to

retrieve data

from

databases.

• Bind

retrieved data

to form

controls

dynamically.

• Format and

organize

displayed

data for

clarity and

usability.

Records are

displayed

accurately and in

real time on

forms.

Detailed knowledge of:

Methods: The trainee should

explain how to:

• Write SQL queries to

fetch records based on

user input or predefined

conditions.

• Bind data dynamically to

various form controls like

grids, lists, or labels.

Principles: The student

should explain the principle

of:

• Data representation for

readability and user-

friendliness.

• Error handling during

database queries and data

binding.

Theories: The trainee should

explain:

The trainee should explain:

The following tools

and equipment are

to be available:

• Computers

installed with

programming

IDEs (e.g.,

PyCharm,

Visual Studio,

NetBeans).

• Database

Management

Systems such as

MySQL,

PostgreSQL,

SQLite, or MS

SQL Server for

database

operations.

• Pre-configured

databases, such

as customer

management or

115

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

students display database

records in forms using

various controls, such as

tables or dropdown

menus.

Interactive Tutorials:

Provide guided examples

that integrate SQL

SELECT queries with

form controls to display

real-time data from a

database.

Problem-Solving

Activities: Present real-

world challenges where

students need to design

forms for displaying

data, such as showing

employee details or

product catalogs.

Peer Reviews: Have

students present their

forms displaying

database records for

feedback on

functionality and user

interface design.

• How event-driven

programming

synchronizes user actions

with database

interactions.

• The role of SQL in

filtering and organizing

data for display.

Circumstantial knowledge

Detailed knowledge about:

• Techniques for designing

user-friendly data displays

using form controls.

• Configuring and using

data-binding tools or

libraries in IDEs.

inventory

systems, for

practice.

• Libraries or

frameworks

(e.g., JavaFX,

.NET

DataGridView)

for creating

interactive data

displays.

• Guides on SQL

SELECT

queries and data

binding in

event-driven

programming.

• Tasks for

fetching and

displaying

records on

forms,

including

conditional

queries and

pagination.

• Examples of

applications

that display

database

records

effectively.

 d) Generatin Brainstorming: The student Reports that Detailed knowledge of: The following tools

116

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

g reports

from

database

data

Facilitate group

discussions to explore

different report formats,

layouts, and how to

present data effectively

for various audiences.

Peer Reviews: Have

students present their

reports to peers for

design, clarity, and data

representation feedback.

Demonstration: Show

how to fetch data from a

database and generate

reports.

Hands-On Practice:

Assign tasks where

students create simple

reports by retrieving and

formatting data from

databases.

Problem-Solving

Activities: Present

scenarios requiring

report generation, such

as creating monthly

financial summaries or

inventory status reports.

should be able to:

• Write SQL

queries to

retrieve data

required for

reports.

• Format and

organize data

into

meaningful

and readable

report

layouts.

accurately reflect

database data and

that meet

specified

requirements are

generated from

database.

Methods: The trainee should

explain how to:

• Write and execute SQL

queries to extract data for

reporting.

Principles: The student

should explain the principle

of:

• Data aggregation and

summarization for report

generation.

• Visual representation of

data for clarity and

decision-making.

Theories: The trainee should

explain:

The trainee should explain:

• How reporting enhances

decision-making in data-

driven applications.

• The role of database

queries in providing

accurate data for reports.

Circumstantial knowledge

Detailed knowledge about:

• Designing reports for

specific use cases (e.g.

financial summaries or

attendance records).

• Formatting data for

and equipment are

to be available:

• Database

Management

Systems such as

MySQL,

PostgreSQL,

SQLite, or MS

SQL Server.

• Pre-configured

datasets for

generating

reports, such as

sales records or

employee

attendance.

• Guides on SQL

queries and

report

generation

using reporting

tools.

• Tasks focusing

on retrieving

data,

formatting, and

exporting

reports.

• Examples of

applications

that use

database-driven

117

Module Title

(Main

Competence)

Unit Title

(Specific

Competence

s)

Elements

(Learning

Activities)

Suggested Teaching and

Learning Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit

Process

Assessment

Product/Services

Assessment
Knowledge Assessment

Case Studies: Analyze

real-world applications

of database-driven

reports.

graphs, tables, and charts

to improve visual appeal.

• Integrating reports into

event-driven applications

for real-time data updates.

reporting for

decision-

making.

• Pre-designed

report templates

for tasks like

sales summaries

or monthly

financial

overviews.

118

Form Four

Table 6: Detailed contents for Form Four

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

1. Mobile

applicatio

n

developm

ent

1.1. Working

with

mobile

apps and

develop

ment

platform

s

(a) Setting up the

development

environment

Brainstorm

Guide students to

discuss various

current applications

and areas that require

mobile apps. Also

identify common

tools and

environments for

mobile app

development.

Demonstration:

Demonstrate how to

install and configure

IDEs (e.g., Android

Studio, Xcode)

Activity and

Practice:

Students follow step-

by-step guides to set

up their own

development

environments.

Peer Review:

Students collaborate

to troubleshoot setup

issues.

• Install and

configure IDEs

and SDKs.

• Test the

installation

setup by

running a

simple mobile

application to

display “Hello

World”.

Fully functional

mobile app

development

environment ready

to create and run

basic mobile apps.

Detailed knowledge of:

Method used: The student

should explain

• tools and processes

required for mobile

development.

Principles: The student

should explain the

principles of:

• compatibility

considerations (e.g.,

OS versions).

Theories: The student

should explain:

• concepts of mobile

app, characteristics,

advantages, etc.

• role of SDKs, IDEs,

and build tools in

mobile development.

Circumstantial

knowledge:

Detailed knowledge

about:

• Troubleshoot

installation errors and

version mismatches

The following tools

and equipment are

to be available:

• Personal

computer.

• IDEs: Android

Studio, Xcode.

• SDKs for

Android, iOS.

• Tutorials or

guides.

• Mobile devices

or emulators.

122

119

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

(b) Performing

exploration

of basic

mobile user

interface

components

Brainstorm:

Guide students to

explore UI

components like

buttons, text inputs,

and labels using a

visual example.

Activity and

Practice:

Students create a

sample UI with basic

components.

Role-Playing:

Act as users to test

and provide feedback

on UI usability.

Game-Based

Learning: Timed

challenges to

replicate UI designs.

• Identify and

implement

basic UI

components.

• Test

functionality

and

responsiveness

of components.

Sample mobile

app with

functional buttons,

text fields, and

labels.

Detailed knowledge of:

Method used: The student

should explain

• the common UI

components and their

purposes.

Principles: The student

should explain the

principles of:

• usability and user-

centric design.

Theories: The student

should explain:

• the key UI

components.

• the Model-View-

Controller (MVC)

design pattern.

Circumstantial

knowledge:

Detailed knowledge about:

• platform-specific

component behavior

and accessibility

considerations.

The following tools

and equipment are

to be available:

• Personal

computer.

• IDEs: Android

Studio, Xcode.

• Mobile design

guide books.

• Tools for UI

prototyping

(e.g. Figma).

• Sample app

design

templates.

 (c) Using layouts,

views, and

containers

Demonstration:

Illustrate how to use

layout managers (e.g.,

ConstraintLayout,

LinearLayout) to

design mobile

screens.

• Organize app

screens by

applying

layouts and

views

• Create

responsive and

Mobile apps with

properly

structured layouts

and consistent

navigation.

Detailed knowledge of:

Method used: The student

should explain

• the role of layouts in

mobile app design.

Principles: The student

should explain the

The following tools

and equipment are

to be available:

• Personal

computer.

• IDEs.

• Mobile phones

120

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

Scenario-Based

Learning:

Students work on

given app layout

requirements.

Activity and

Practice:

Students create multi-

screen layouts using

views and containers.

dynamic

designs using a

combination of

containers

principles of:

• responsive design and

screen size adaptation.

Theories: The student

should explain:

• the concept of

hierarchy and nesting

of views

Circumstantial

knowledge:

Detailed knowledge about:

• screen orientation

changes

with varying

screen sizes or

emulators.

 (d) Performing

addition and

customisation

of basic user

interface

components

Brainstorming:

Discuss creative ways

to enhance UI design

for specific use cases.

Demonstration:

Demonstrate how to

add and style UI

components using

XML and

programmatically.

Activity and

Practice:

Students customize

buttons, and inputs.

Peer Review:

Students present their

customized UIs for

feedback from their

peers.

• Add

components to

an app.

• Customize

styles and

interactions

(e.g., button,

color themes).

Mobile app with

interactive and

visually appealing

UI elements.

Detailed knowledge of:

Method used: The student

should explain

• styling and theming in

mobile apps.

Principles: The student

should explain the

principles of:

• consistency in design

and platform

guidelines.

Theories: The student

should explain:

• state management and

component

customization.

Circumstantial

knowledge:

Detailed knowledge about:

The following tools

and equipment are

to be available:

• Personal

computer.

• Style guides

for mobile

platforms.

• Resources for

designing

accessible

apps.

• Tools for UI

animation.

121

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

 • handling touch

events, animations,

and cross-platform

compatibility of

customized

components.

1.2. Handling

user

input

and

basic

interacti

ons

(a) Performing

handling of

user input

Demonstration:

Illustrate how to use

input components

like text fields,

sliders, and switches

in a mobile app.

Activity and

Practice:

Students create a

sample app that

captures input (e.g.,

name, age,

preferences).

Role-Playing:

Students act as users

to test various input

forms.

• Implement

input

components

and collect data

from users.

• Write scripts to

handle

different types

of input (e.g.,

text, numbers,

dates).

Mobile app that

successfully

captures and

stores user inputs.

Detailed knowledge of:

Method used: The student

should explain how to

• handle different types

of user input

Principles: The student

should explain the

principles of:

• accessibility and user-

friendly input design.

Theories: The student

should explain:

(e) different types of user

input components and

their application.

(f) concepts like input

validation and

platform-specific

input management.

Circumstantial

knowledge:

Detailed knowledge about:

• Handle errors such as

invalid input formats

and device-specific

input issues.

The following tools

and equipment are

to be available:

• Computer

• IDEs: Android

Studio, Xcode.

• Input

documentation

for iOS and

Android

platforms.

• Testing mobile

apps or

emulators.

148

122

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

(b) Performing

handling of

events

Brainstorming:

Discuss examples of

interactive features in

apps.

Demonstration:

Teacher explains

event-driven

programming by

creating event

handlers (e.g., for

button clicks,

gestures).

Activity and

Practice:

Students write code

to handle events

triggered by user

actions.

• Attach event

listeners to UI

components.

• Trigger

appropriate

actions based

on user

interaction

(e.g.,

navigation on a

button click).

Mobile app with

interactive

components

responding

appropriately to

user events.

Detailed knowledge of:

Method used: The student

should explain how

• events are handled in

mobile app

development.

Principles: The student

should explain the

principles of:

• responsiveness and

efficiency in event

handling.

Theories: The student

should explain:

• types of events in

mobile apps

• event lifecycle and

event bubbling.

Circumstantial

knowledge:

Detailed knowledge

about:

• challenges like

unresponsive

components or

misaligned event

triggers in complex

layouts.

The following tools

and equipment are

to be available:

• Computer

• Documentation

on event

handling.

• Sample code

snippets for

event listeners.

• Emulators or

devices to

simulate user

actions.

(c) Performing

validation

and

processing

Demonstration:

Illustrate methods to

validate user inputs

(e.g., format

• Validate inputs

for accuracy

and

completeness.

A functional app

that rejects invalid

inputs and

processes valid

Detailed knowledge of:

Method used: The student

should explain

• validation techniques

The following tools

and equipment are

to be available:

• Computer set.

123

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

user of input checking, required

fields).

Scenario-Based

Learning:

Students develop an

app that processes

validated inputs (e.g.,

a registration form).

Activity and

Practice:

Implement client-side

and server-side

validation.

• Process data

effectively and

securely (e.g.,

encrypt

sensitive data).

data seamlessly. and their relevance.

Principles: The student

should explain the

principles of:

• data integrity,

security, and

usability.

Theories: The student

should explain:

• client-side vs. server-

side validation and

their trade-offs.

Circumstantial

knowledge:

Detailed knowledge about:

• edge cases like

unexpected user

behavior and

malicious inputs.

• Guides for

secure data

handling.

• Case studies on

validation

challenges in

mobile apps.

(d) Showing

feedback to

users

Demonstration:

Demonstrate how to

implement feedback

mechanisms like

toasts, alerts, and

progress indicators.

Activity and

Practice:

Students add

feedback features to

their apps (e.g.,

“Submission

successful”

• Provide visual

or textual

feedback for

user actions.

Mobile app that

displays clear,

appropriate, and

timely feedback to

users.

Detailed knowledge of:

Method used: The student

should explain how to

• provide timely

feedback in mobile

app.

Principles: The student

should explain the

principles of:

• user satisfaction and

app usability.

Theories: The student

should explain:

The following tools

and equipment are

to be available:

• Computer

• User feedback

design

templates.

• Documentation

on human-

computer

interaction

principles.

124

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

messages).

Role-Playing:

Students provide

feedback as users

testing the apps.

• feedback types and

best practices and the

importance of

feedback loops.

• human-computer

interaction principles

Circumstantial

knowledge:

Detailed knowledge about:

• Handling issues like

delayed feedback or

unclear messages

leading to user

confusion.

1.3. Working

with data

and

multime

dia

(a) Using local

data storage
Brainstorm: Guide

students to discuss

various local storage

approaches

Demonstration:

Illustrate how to use

SQLite,

SharedPreferences, or

file storage for saving

local data.

Scenario-Based

Learning:

Students create a

small app (e.g., a

notes app) that stores

and retrieves data

locally.

Activity and

• Save, retrieve,

and update data

using local

storage

techniques

• Persist data

between app

sessions.

A functional app

that efficiently

uses local storage

to handle data

persistence.

Detailed knowledge of:

Method used: The student

should explain how

• various local storage

options and when to

use each.

Principles: The student

should explain the

principles of:

• data integrity and

security in local

storage.

Theories: The student

should explain:

• various local storage

options and their

appropriateness

• data serialization,

The following tools

and equipment are

to be available:

• Computer

• SQLite and

Shared

Preferences

documentation.

• Emulators or

devices for

testing data

persistence.

• Sample apps

with local

storage

examples.

122

125

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

Practice: Students

integrate local storage

into an app.

storage limits, and file

organization.

Circumstantial

knowledge:

Detailed knowledge about:

• issues like limited

storage space and data

conflicts.

(b) Showing

images and

videos

Brainstorming:

Discuss app ideas

where multimedia

data is needed to be

displayed.

Demonstration:

Demonstrate how to

load images (e.g.,

using Glide or

Picasso libraries) and

play videos using

native video players

or APIs.

Activity and

Practice:

Students develop an

app that displays an

image gallery or

streams videos.

• Display images

from local

storage, URLs,

or APIs.

• Integrate video

playback

features (e.g.,

play, pause,

seek).

Mobile app that

effectively

displays images

and plays videos,

with smooth

transitions and

user-friendly

controls.

Detailed knowledge of:

Method used: The student

should explain how to

• integrate multimedia

in mobile apps

Principles: The student

should explain the

principles of:

• responsiveness,

caching, and smooth

playback.

Theories: The student

should explain:

• Types of media

supported by mobile

apps

• the role of

compression formats

and streaming

protocols.

Circumstantial

knowledge:

Detailed knowledge about:

• challenges like slow

The following tools

and equipment are

to be available:

• Computer

• Libraries like

Glide, Picasso,

and ExoPlayer.

• Multimedia file

examples

(images,

videos).

• Network tools

for testing

streaming

content.

126

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

loading, unsupported

formats, or resource-

intensive multimedia

content.

1.4. Optimisi

ng and

deployin

g mobile

apps

(a) Performing

optimisation

of mobile app

Brainstorm:

Facilitate a discussion

on the reasons and

cases that require

optmization in mobile

apps.

Demonstration:

Show different

techniques for

enhancing mobile app

performance (e.g.,

reducing memory

usage, improving

load times).

Case Study:

Students analyze

poorly optimized

apps and identify

areas of

improvement.

Activity and

Practice:

Optimize an existing

app for speed,

battery, and resource

efficiency.

• Reduce app

size by

removing

unused

resources.

• Improve app

responsiveness

and memory

usage.

• Test battery

performance.

A mobile app that

is lightweight,

responsive, and

energy-efficient.

Detailed knowledge of:

Method used: The student

should explain how to

• optimize the mobile

app using methods

such as profiling,

refactoring, and

caching

Principles: The student

should explain the

principles of:

• reducing resource use

and ensuring

responsiveness.

Theories: The student

should explain:

• the impact of

algorithms, threading,

and garbage

collection in mobile

app development.

Circumstantial

knowledge:

Detailed knowledge

about:

• platform-specific

performance

bottlenecks.

The following tools

and equipment are

to be available:

• Computer

• Profiling tools

like Android

Studio Profiler.

• Sample apps

for

optimization

practice.

• Mobile devices

for real-world

testing.

76

127

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

(b) Deploying

the mobile

app

Demonstration:

Guide students

through the process

of signing and

building apps for

deployment on

platforms (e.g.,

Google Play, App

Store).

Activity and

Practice: Students

deploy a test app to a

mobile store or as an

APK.

• Build and

package the

app for

deployment.

• Test the app in

a production-

like

environment.

Configure store

listings.

A successfully

deployed mobile

app available for

download or as a

functional APK.

Detailed knowledge of:

Method used: The student

should explain

• the deployment

lifecycle and

necessary

configurations.

Principles: The student

should explain the

principles of:

• security (e.g., app

signing) and proper

versioning.

Theories: The student

should explain:

• mobile app

deployment options

(e.g. as an APK or via

app stores)

• app store guidelines

and approval

processes.

Circumstantial

knowledge:

Detailed knowledge about:

• common deployment

errors such as missing

certificates or

compatibility issues.

The following tools

and equipment are

to be available:

• Computer

• Developer

accounts for

app stores.

• Signing tools

and certificates.

• Documentation

on deployment

best practices.

2.

Integrating

cybersecurity

2.1

Identifying

and

a) Identifying

common

cybersecurity

Demonstration:

Show how

cybersecurity

The student should be

able to:

• Identify

Common threats

are correctly

identified and

Detailed knowledge of:

Methods: The trainee

should explain how to:

The following tools

and equipment are

to be available:

63

128

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

measures into

applications

controlling

cybersecurity

threats

threats threats manifest in

applications using

simulated

environments or

real-life scenarios.

Elaborate on

Confidentiality,

Integrity and

Availability.

Interactive

Tutorials: Guide

students through

identifying

security breaches

by analysing

application

behaviour and

logs.

Brainstorming:

Facilitate group

discussions to

explore potential

cybersecurity

threats in various

application

contexts.

Peer Reviews:

Have students

present identified

threats and

cybersecurity

threats.

• Use systematic

approaches to

document

cybersecurity

threats

documented with

sufficient detail.
• Document identified

threats systematically

for reporting or

further action.

Principles: The student

should explain the

principle of:

• Application security

fundamentals, such as

confidentiality,

integrity, and data

encryption.

Theories: The trainee

should explain:

The trainee should

explain:

• How cybersecurity

threats exploit

application

vulnerabilities.

Circumstantial

knowledge

Detailed knowledge about:

• Types of

cybersecurity threats,

such as phishing,

ransomware, SQL

injection, and insider

threats.

• Security best

• Virtual labs for

simulating and

detecting

cybersecurity

threats.

• Mock

applications

with deliberate

vulnerabilities

for hands-on

threat

identification.

• Guides on

identifying

cybersecurity

threats and

analysing

application

vulnerabilities.

• Reports of

actual security

breaches and

lessons learned.

• Industry

standards and

guidelines for

application

security

129

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

receive

constructive

feedback on their

analyses.

practices, such as

secure coding

standards.

• Social engineering

tactics that attackers

use to compromise

systems.

 b) Controlling

cybersecurity

threats

Brainstorming:

Facilitate group

discussions to

identify creative

approaches for

mitigating cyber

threats.

Interactive

Tutorials: Guide

students through

step-by-step

examples of

mitigating

specific

cybersecurity

threats.

Case Studies:

Analyze historical

cybersecurity

breaches to

evaluate the

effectiveness of

various mitigation

strategies.

The student should be

able to:

• Identify

appropriate

mitigation

strategies for

specific

cybersecurity

threats.

• Confirm that the

application aligns

with industry best

practices and

regulatory

standards after

mitigation.

Effective

mitigation

(control) measures

that aligns with

industry best

practices for

addressing

cybersecurity

threats are

identified.

Detailed knowledge of:

Methods: The trainee

should explain how to:

• Identify threats and

vulnerabilities using

established

frameworks.

Principles: The student

should explain the

principle of:

• Layered security to

provide multiple

barriers against

threats.

Theories: The trainee

should explain:

The trainee should

explain:

• The importance of

incident response in

mitigating the impact

of cybersecurity

threats.

The following tools

and equipment

should be made

available:

• Virtual setups

to test and

implement

mitigation

measures

safely.

• Mock

applications

with

vulnerabilities

for students to

apply

mitigation

techniques.

• Online

platforms

offering

cybersecurity

challenges and

exercises.

130

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

Peer Reviews:

Have students

present their

mitigation

strategies for

feedback and

improvement

suggestions.

Simulation

Activities: Use

virtual labs to

replicate cyber

threats and allow

students to

practice real-time

mitigation.

• The theory of

encryption and how it

secures data against

unauthorised access.

Circumstantial

knowledge

Detailed knowledge about:

• Emerging threats like

ransomware, zero-day

attacks, and advanced

persistent threats.

• Best practices for

securing cloud-based

applications and

services.

• Guides on

mitigating

various types

of threats and

securing

applications.

• Detailed

analyses of

cybersecurity

incidents and

responses.

 2.2

Practising

safe

programming

practices

a) Performing

sanitisation

and

validation of

user inputs

Brainstorming:

Facilitate group

discussions on

potential threats

posed by

unvalidated user

inputs and

strategies to

counter them.

Case Studies:

Analyze incidents

where unsanitised

inputs led to

security breaches

The student should be

able to:

• Identify and

implement

appropriate

sanitisation and

validation

techniques for

different input

types.

• Integrate validation

checks at critical

points in the

application.

User inputs are

appropriately

sanitised and

validated against

predefined rules.

Detailed knowledge of:

Methods: The trainee

should explain how to:

• Use regular

expressions and data

validation libraries to

verify input format.

• Implement

sanitisation methods

to remove or

neutralise harmful

data.

• Apply input

validation at both

client and server sides

 The following

tools and equipment

are to be available:

• Computer

installed with

programming

tools (e.g.

Visual Studio,

PHP, Java

PyCharm) for

coding

exercises.

• Libraries and

frameworks for

63

131

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

and identify

lessons learned.

Demonstration:

Show how

improper user

input can lead to

vulnerabilities

like SQL injection

or cross-site

scripting (XSS)

and demonstrate

sanitisation

techniques.

Interactive

Tutorials: Guide

students step-by-

step on how to

implement input

validation and

sanitisation using

programming

libraries or

frameworks.

Hands-On

Practice: Assign

exercises where

students sanitize

inputs in sample

applications to

prevent attacks.

to ensure robust

security.

Principles: The student

should explain the

principle of:

• Whitelisting allowed

input formats to

ensure strict

validation.

• Escaping special

characters to prevent

injection attacks.

Theories: The trainee

should explain:

The trainee should

explain:

• How improper input

validation can lead to

critical vulnerabilities

like SQL injection,

XSS, or buffer

overflow.

• The role of input

validation in

preventing the

propagation of

malicious data.

Circumstantial

knowledge

Detailed knowledge about:

secure coding.

• Step-by-step

guides on

implementing

input validation

and sanitisation

techniques.

• Exercises

focused on

identifying

vulnerabilities

and applying

sanitisation

methods.

• Case Studies

analyzing past

breaches due to

improper input

handling.

132

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

Peer Reviews:

Have students

review each

other’s code for

input handling to

identify potential

vulnerabilities and

offer suggestions.

• Data validation

techniques specific to

application contexts,

such as numeric, date,

and string inputs.

• Threats posed by

unescaped characters

in SQL queries,

HTML, or script tags.

• Best practices for

validating user inputs

in web applications,

mobile apps, and

APIs.

 b) Performing

prevention of

injections

attacks

Brainstorming:

Facilitate group

discussions to

identify potential

injection attack

vectors and

strategies to

secure

applications.

Case Studies:

Analyze real-

world injection

attack incidents

and evaluate how

they could have

been prevented.

Demonstration:

The student should be

able to:

• Identify injection

attack risks

• Implement suitable

preventive

measures against

injection attacks.

Applications are

protected against

injection attacks

and perform

securely under

various input

conditions.

Detailed knowledge of:

Methods: The trainee

should explain how to:

• Use parameterized

queries and stored

procedures to secure

database interactions.

• Validate and sanitize

user inputs to prevent

injection

vulnerabilities.

Principles: The student

should explain the

principle of:

• Input validation to

prevent malicious

code execution.

The following tools

and equipment are

to be available:

• Computer

installed with

programming

tools (e.g.

Visual Studio,

PHP, Java

PyCharm) for

coding

exercises.

• Libraries and

frameworks for

secure coding.

• Step-by-step

guides on

133

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

Show examples of

injection attacks,

such as SQL

injection or XSS,

and how to

mitigate them

with secure

coding practices.

Interactive

Tutorials: Guide

students step-by-

step through

implementing

parameterized

queries and

escaping user

inputs to prevent

injection

vulnerabilities.

Hands-On

Practice: Assign

tasks where

students identify

injection

vulnerabilities in

sample

applications and

fix them using

secure techniques.

Peer Reviews:

Theories: The trainee

should explain:

The trainee should

explain:

• How injection attacks

exploit poorly coded

applications and

unsecured input

fields.

Circumstantial

knowledge

Detailed knowledge about:

• SQL injection, XSS,

LDAP injection, and

other types of

injection

vulnerabilities.

implementing

input validation

and sanitisation

techniques.

• Exercises

focused on

identifying

vulnerabilities

and applying

sanitisation

methods.

• Case Studies

analyzing past

breaches due to

improper input

handling.

134

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

Have students

present their

secured code to

peers for feedback

on potential

vulnerabilities and

improvements.

 2.3

Encrypting

and

decrypting

data

a) Implementing

data encryption

Brainstorming:

Facilitate group

discussions on the

importance of

encryption for

protecting

personal data, like

passwords or

messages.

Demonstration:

Show how basic

encryption

techniques like

Caesar cipher and

XOR encryption

work using step-

by-step examples.

Interactive

Tutorials: Guide

students to write

and test

encryption scripts.

Case Studies:

The student should be

able to:

• Understand and

apply basic

encryption

techniques like

substitution or

XOR operations.

• Assess accuracy in

encrypting

messages or data.

Encrypted data is

accurate and

functions as

intended.

Detailed knowledge of:

Methods: The trainee

should explain how to:

• Apply basic

encryption algorithms

like Caesar cipher and

substitution cipher.

• Encode data using

simple encoding

schemes like Base64.

Principles: The student

should explain the

principle of:

• Substituting or

shifting characters to

create encrypted

messages.

• Protecting sensitive

data using encryption

and encoding.

Theories: The trainee

should explain:

The trainee should

explain:

 The following

tools and equipment

are to be available:

• Computer

installed with

programming

tools (e.g.

Visual Studio,

PHP, Java

PyCharm) for

coding

exercises.

• Encryption

libraries or

frameworks.

• Sample

applications

requiring

encryption for

data protection,

such as login

systems or

payment

platforms.

• Guides on

63

135

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

Analyze relatable

scenarios, such as

securing a secret

message or

protecting a

personal file, to

illustrate

encryption's

value.

Hands-On

Practice: Assign

tasks where

students

implement and

test basic

encryption

algorithms.

Group Projects:

Encourage

students to design

a simple

messaging system

that encrypts

messages.

Peer Reviews:

Allow students to

review and test

each other's

encryption

solutions for

feedback and

• The concept of keys

in encryption and

their role in encoding

data.

• How encryption

makes intercepted

data unreadable to

unauthorised

individuals.

• The role of simple

algorithms in the

foundation of

cybersecurity

measures.

Circumstantial

knowledge

Detailed knowledge about:

• Applications of

encryption in securing

personal files and

messages.

• How encryption

protects data

transmitted over

networks, like emails

or chats.

• Challenges of weak

encryption and the

importance of

algorithm choice.

• The difference

implementing

encryption

methods and

managing

encryption

keys.

• Tasks focusing

on encrypting

data, as well as

key

management.

• Analyses of

incidents

highlighting

the role of

encryption in

cybersecurity.

136

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

improvement. between encoding,

encryption, and

hashing at a basic

level.

 b) Implementing

data decryption

Demonstration:

Show how

encrypted data is

decrypted using

algorithms like

Caesar cipher or

AES, highlighting

the role of keys.

Case Studies:

Analyze scenarios

where encrypted

data was

successfully

decrypted to

prevent data loss

or security

breaches.

Interactive

Tutorials: Guide

students step-by-

step to implement

decryption

techniques.

Brainstorming:

Facilitate group

discussions on

The student should be

able to:

• Identify the

appropriate

decryption

technique for a

given encrypted

data set.

• Assess their

accuracy in

decrypting data

using predefined

keys and ensuring

data integrity.

Decrypted data

matches the

original plaintext

data without errors

or loss.

Detailed knowledge of:

Methods: The trainee

should explain how to:

• Use symmetric and

asymmetric

decryption techniques

to retrieve original

data.

• Test the accuracy and

integrity of decrypted

data.

Principles: The student

should explain the

principle of:

• Key management,

including the role of

public and private

keys in decryption.

• Decrypting data

securely while

preventing

unauthorized access.

Theories: The trainee

should explain:

The trainee should

explain:

The following tools

and equipment are

to be available:

• Computer

installed with

programming

tools (e.g.

Visual Studio,

PHP, Java

PyCharm) for

coding

exercises.

• Decryption

libraries.

• Sample data

consisting of

encrypted files

or text

messages for

students to

decrypt during

practical

exercises.

• Tutorials and

standards on

decryption

techniques and

best practices.

137

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

real-world

applications of

data decryption

(e.g. secure

communications

and file

protection).

Hands-On

Practice: Assign

tasks for

decrypting data

using predefined

keys and

algorithms.

Peer Reviews:

Have students test

and review each

other’s decryption

implementations

for accuracy and

security.

• How encryption and

decryption processes

work together to

secure data.

• The role of algorithms

in ensuring the

accuracy and

reliability of

decryption.

Circumstantial

knowledge

Detailed knowledge about:

• Applications of

decryption in securing

personal and business

data.

• Managing encryption

and decryption keys

in real-world

scenarios like cloud

storage.

• Step-by-step

guides on

decrypting data

using basic

algorithms.

• Practical tasks

to decrypt data

using

predefined

keys and

validate the

results.

 2.4

Handling

sensitive

information

in

programming

a) Implementin

g prevention

of

hardcoding

sensitive

information

in source

code

Brainstorming:

Facilitate

discussions on the

potential

consequences of

hardcoding

sensitive data and

alternative secure

practices.

The student should be

able to:

• Identify hardcoded

sensitive

information in

source code.

• Implement

prevention of

hardcoding

sensitive

Sensitive

information is

properly coded

and not exposed in

the source code.

Detailed knowledge of:

Methods: The trainee

should explain how to:

• Implement secure

practices for

prevention of

hardcoding sensitive

information

Principles: The student

The following tools

and equipment are

to be available:

• Computer

installed with

programming

tools (e.g.

Visual Studio,

PHP, Java

63

138

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

Demonstration:

Show how

sensitive

information, such

as passwords, can

be hardcoded and

the security risks

involved.

Case Studies:

Analyze real-

world scenarios

where hardcoding

sensitive data led

to breaches,

focusing on

lessons learned.

Hands-On

Practice: Assign

tasks where

students identify

and replace

hardcoded

sensitive

information with

secure

alternatives.

information should explain the

principle of:

• Minimising exposure

of sensitive data by

using secure

approach.

Theories: The trainee

should explain:

The trainee should

explain:

• How exposing

sensitive information

in source code

increases security

risks, such as

unauthorised access.

Circumstantial

knowledge

Detailed knowledge about:

• Techniques for

encrypting sensitive

data before storage or

transmission.

• Best practices for

managing passwords

and cryptographic

keys securely.

PyCharm) for

coding

exercises.

• Step-by-step

guides on

removing

hardcoded

sensitive data.

• Practical tasks

to identify and

mitigate

hardcoded

sensitive

information in

sample code.

• Real-world

examples of

security

breaches due to

exposed

sensitive data.

 b) Implementin

g protection

of sensitive

information

Brainstorming:

Facilitate group

discussions to

explore the risks

The student should be

able to:

• Identify sensitive

Sensitive

information is

securely stored

using appropriate

Detailed knowledge of:

Methods: The trainee

should explain how to:

The following tools

and equipment are

to be available:

139

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

in storage of insecure data

storage and

strategies for

mitigating them.

Demonstration:

Show how

sensitive

information, such

as passwords and

personal data, can

be securely stored

using encryption

and hashing

techniques.

Interactive

Tutorials: Guide

students through

implementing

secure storage

practices using

tools like database

encryption or file

encryption

libraries.

Case Studies:

Analyze incidents

where sensitive

data was

compromised due

to poor storage

information that

needs protection in

storage.

• Implement

encryption,

hashing, or other

secure storage

techniques.

storage solution

that meets

industry standards

and protects data

from unauthorised

access.

• Encrypt sensitive data

before storing it in a

database or file

system.

Principles: The student

should explain the

principle of:

• Data encryption and

decryption to secure

information in

storage.

• Hashing for storing

non-reversible

sensitive data

securely.

Theories: The trainee

should explain:

The trainee should

explain:

• The role of encryption

algorithms in securing

data at rest.

• The importance of

hashing for password

protection and why it

differs from

encryption.

Circumstantial

knowledge

• Computer

installed with

programming

tools (e.g.

Visual Studio,

PHP, Java

PyCharm) for

coding

exercises.

• Encryption

libraries for

secure storage.

• Database

management

systems that

support

encryption,

such as

PostgreSQL, or

MySQL.

• Key

management

tools.

• Step-by-step

guides on

implementing

encryption and

hashing.

• Practical tasks

for encrypting,

hashing, and

securely

140

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

practices and

identify

preventive

measures.

Hands-On

Practice: Assign

tasks for

implementing and

testing secure data

storage techniques

in sample

applications.

Peer Reviews:

Have students

review and

evaluate each

other’s data

storage solutions

to identify

strengths and

weaknesses.

Detailed knowledge about:

• Tools and frameworks

for implementing

encryption and

hashing.

• Standards and

guidelines for data

storage security.

• Using secure storage

solutions for cloud-

based applications.

storing

sensitive data.

• Examples of

data breaches

caused by

insecure

storage and

their

mitigation.

• Documentation

on secure

storage

practices.

3. Integrati

ng

program

ming

with data

science

3.1. Creating

basic

program

s

a) Performing

exploration of

basic

programming

constructs

Brainstorm:

Facilitate students to

define workshop

service bay and

discuss key

components of a

workshop service bay

and the importance of

proper organization

and safety.

• The student

should be able

to:

• Use of correct

syntax for

variables,

loops, and

conditionals.

• Identify and

A functional

Python script

showcasing proper

use of variables,

conditionals, and

loops.

Detailed knowledge of:

Method used: The student

should explain:

• Step-by-step

explanation of Python

basics (syntax,

semantics).

Principles: The student

should explain the

principles of:

The following tools

and equipment are

to be available:

• Computer

• Python IDE

(e.g., PyCharm,

VS Code, or

Jupyter

Notebook).

• Python

112

141

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

- Demonstration:

Demonstrate basic

constructs such as

variables,

conditionals, loops,

and data types.

Hands-On Practice:

Students write small

programs to

understand constructs

like if statements, for

loops, and while

loops.

Guided Inquiry:

Students analyze

sample code snippets

for functionality and

errors.

correct logical

errors in code.
• clean and efficient

coding practices.

Theories: The student

should explain:

• basic concepts and

applications of Python

programming

language

• data types and

variables in Python

• flow control

(sequential,

conditional, iterative).

Circumstantial

knowledge:

Detailed knowledge about:

• debugging computer

programs.

documentation

or tutorials.

b) Implementing

handling of

user inputs

and outputs

Brainstorm: Guide

students to discuss

real-world

input/output

scenarios.

Activity and

Practice:

Create programs that

take user input (e.g.,

input()) and display

outputs with

formatted text (e.g.,

print() with

formatting).

• Implement user

inputs and

outputs in a

mobile app.

• Handle both

app’s expected

and unexpected

inputs.

A Python script

that interacts

effectively with

users via prompts

and displays

formatted outputs.

Detailed knowledge of:

Method used: The student

should explain how to:

• Handle inputs and

producing outputs.

Principles: The student

should explain the

principles of:

• user-friendly

interaction in

programs.

Theories: The student

should explain:

• the role of data

The following tools

and equipment are

to be available:

• Computer

• Python IDE

(e.g., PyCharm,

VS Code, or

Jupyter

Notebook).

• Real-world

examples for

input/output

interaction.

142

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

validation and error

handling in user

interactions.

Circumstantial

knowledge:

Detailed knowledge about:

• Handling edge cases

in input/output.

c) Using basic

libraries for

data science

Demonstration:

Introduce libraries

such as NumPy,

pandas, and

matplotlib for basic

data analysis.

Hands-On Practice:

Students perform

simple tasks like

creating arrays,

dataframes, or

plotting graphs.

Brainstorming:

Discuss how these

libraries simplify data

science tasks.

• Install and

import relevant

libraries for

data analysis.

• Use Python

libraries to

manipulate and

analyze small

datasets.

A Python program

using libraries to

load, process, and

visualize basic

data.

Detailed knowledge of:

Method used: The student

should explain how to:

• explore different data

analysis libraries

Principles: The student

should explain the

principles of:

• modular

programming using

libraries.

Theories: The student

should explain:

• Common examples of

Python libraries

• Concept of data

manipulation and

visualization.

Circumstantial

knowledge:

Detailed knowledge about:

• Data science libraries

The following tools

and equipment are

to be available:

• Computer

• Python library

documentation.

• Small sample

datasets.

3.2. Collectin

g and
a) Collecting

data from

Brainstorm: Guide

the students to
• Collect field

using

Collected and

stored data of high

Detailed knowledge of:

Method used: The student

The following tools

and equipment are

63

143

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

storing

data
multiple

sources
discuss real-world

examples of multi-

source data collection

(e.g., APIs, web

scraping, CSV files).

Demonstration:

Demonstrate data

collection using APIs

and web scraping

tools like requests

and BeautifulSoup.

Activity and

Practice: Students

collect datasets from

online open sources

(e.g., Kaggle,

government portals)

and from the field

using field visit

approaches such as

survey

traditional data

collection

methods

• Extract data

from diverse

online sources

using

automated

tools.

• Use API calls

or web

scraping

techniques.

• Store the

collected data

in suitable

format such as

Excel, CSV,

JSON

quality using

either traditional

field visits or

online sources.

should explain how to:

• collect data using

traditional methods

• us Python tools for

online data collection.

Principles: The student

should explain the

principles of

• ethical and legal

considerations in data

collection.

Theories: The student

should explain:

• Types of data (field

data, online data)

• dealing with

structured and

unstructured data.

Circumstantial

knowledge:

Detailed knowledge about:

• dealing with missing

or inconsistent data

across sources.

to be available:

• Traditional

data collection

tools such as

notebooks

• Electronic data

collection tools

such as Google

Forms

• Internet access

for working

with APIs.

• Tools like

requests,

Beautiful Soup,

or Selenium.

• Sample APIs or

websites for

practice.

b) Implementin

g retrieval of

data from

files

Demonstration:

Demonstrate reading

data from CSV,

Excel, or JSON files

using libraries like

pandas or csv.

Activity and

Practice:

• Retrieve data

correctly from

various file

types.

• Handle file

errors

correctly.

A Python program

that reads, cleans,

and processes data

from files such as

CSV, Excel, or

JSON.

Detailed knowledge of:

Method used: The student

should explain how to:

• read and write files

using Python

Principles: The student

should explain the

principles of

The following tools

and equipment are

to be available:

• Computer

installed with

libraries such

as pandas, csv,

or openpyxl.

144

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

Students retrieve and

process data from

provided datasets.

Problem Solving:

Tasks involve

handling edge cases

(e.g., missing values,

incorrect formats).

• data integrity during

retrieval.

Theories: The student

should explain:

engineering

processes.

Circumstantial

knowledge:

Detailed knowledge about:

• handling large or

corrupted files.

• Sample

datasets in

CSV, JSON, or

Excel format.

 c) Implementin

g local data

storage

Demonstration:

Illustrate how to save

processed data to flat

files using Python

(e.g., writing to CSV

or JSON with pandas

or json).

Hands-On Practice:

Students create

scripts to save

cleaned datasets

locally in their

computers.

Discussion: Compare

formats (CSV, JSON,

Excel) for storing

data and their trade-

offs.

• Write

processed data

using

appropriate file

formats.

• Proper naming

and directory

organization

for stored files.

A well-structured

local directory

with saved

datasets in

appropriate

formats.

Detailed knowledge of:

Method used: The student

should explain how to:

• save cleaned and

formatted files to a

local computer.

Principles: The student

should explain the

principles of

• file format selection

for data analysis and

sharing.

Theories: The student

should explain:

• Concepts of file

formats.

Circumstantial

knowledge:

Detailed knowledge about:

• Handling large

datasets that might

The following tools

and equipment are

to be available:

• Computer

• Python

libraries

(pandas, json).

• Varied datasets

(text-heavy,

numeric-heavy,

mixed types).

145

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

exceed memory limits

during saving.
 d) Performing

connection to

remote

databases

Demonstration:

Illustrate how to

connects to a remote

database using

libraries like

psycopg2 for

PostgreSQL or

mysql-connector-

python for MySQL.

Activity and

Practice: Students

practice retrieving

and storing data in

remote databases.

Role-Playing:

Students simulate

client-server

interactions.

• Read and

proces data

from flat files.

• Handle errors

and clean data.

• Handle

credentials

securely.

A Python program

that retrieves and

processes data

from local flat

files (e.g., CSV,

Excel, or JSON).

Detailed knowledge of:

Method used: The student

should explain how to:

• read process data

from remote storage.

Principles: The student

should explain the

principles of

• storage based on

accessibility and

security needs.

Theories: The student

should explain:

• Trade-offs between

local storage, shared

network storage, and

cloud solutions.

Circumstantial

knowledge:

Detailed knowledge about:

• Limitations in storage

or retrieval due to

connectivity issues.

The following tools

and equipment are

to be available:

• Computer

• Optional

introduction to

tools like

Google Drive

API or Amazon

S3 for remote

storage

3.3. Cleaning

and

organizi

ng data

a) Performing

basic data

cleaning

Demonstration:

Illustrate cleaning

techniques like

handling missing

values, removing

duplicates, and

correcting data types

• Identify and

handle missing

data (e.g.,

imputation or

removal).

• Handle

duplicate

A cleaned dataset

free from missing

values, duplicates,

or data type

issues.

Detailed knowledge of:

Method used: The student

should explain how to:

• handle common data

cleaning issues.

Principles: The student

should explain the

The following tools

and equipment are

to be available:

• Computer wit

tools: pandas,

numpy.

• Messy datasets

63

146

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

using libraries such as

pandas.

Activity and

Practice: Students

work with messy

datasets to clean data.

Discussion: Ethical

implications of

modifying raw data.

records or

invalid entries.

principles of

• consistency,

reliability, and

accuracy.

Theories: The student

should explain:

• Data quality

dimensions (e.g.,

completeness,

validity).

Circumstantial

knowledge:

Detailed knowledge about:

• Data quality issues

(e.g., CSVs

with missing,

duplicated, or

invalid values).

b) Performing

basic data

transformatio

ns

Demonstration:

Illustrate data

transformation

techniques like

filtering, sorting,

renaming columns,

and deriving new

features.

Hands-On Practice:

Students create

derived variables,

reorder datasets, and

filter data.

• Manipulate

data structures

and apply

transformations

like filtering

and sorting.

• Create

meaningful

derived

variables.

A transformed

dataset that meets

specified

requirements (e.g.,

sorted, filtered, or

with additional

features).

Detailed knowledge of:

Method used: The student

should explain how to:

• apply transformations

on data

Principles: The student

should explain the

principles of

• Reproducibility in

data transformations.

Theories: The student

should explain:

• Feature engineering

and its role in

improving data utility.

Circumstantial

knowledge:

Detailed knowledge about:

The following tools

and equipment are

to be available:

• Computer

• Tools: pandas,

numpy.

• Sample

scenarios

requiring

transformations

(e.g., filtering

outliers,

creating

summary

columns).

6

147

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

• Handling errors when

performing complex

transformations (e.g.,

applying functions to

entire columns).

c) Performing

basic data

normalisation

and

standardisatio

n

Demonstration:

Demonstrate the

concepts of

normalization

(scaling data to a

range) and

standardization (z-

scores) using sklearn.

Activity: Normalize

and standardize

datasets for a

machine learning

task.

Discussion:

Advantages of

scaling in improving

model performance.

• Scale

numerical data

effectively.

• Apply

normalization

or

standardization

based on

context.

A preprocessed

dataset with

numerical features

normalized or

standardized.

Detailed knowledge of:

Method used: The student

should explain how to:

• normalize data using

Python

• standardize data using

Python.

Principles: The student

should explain the

principles of

• Reducing feature bias

in data analysis.

Theories: The student

should explain:

• Normalization versus

standardization (e.g.,

min-max scaling vs.

z-score).

Circumstantial

knowledge:

Detailed knowledge about:

• Deciding when

scaling is necessary

(e.g., for algorithms

sensitive to data

ranges).

The following tools

and equipment are

to be available:

• Computer

• Tools:

sklearn.preproc

essing.

• Datasets with

diverse ranges

for scaling and

standardization

exercises.

 d) Using Demonstration: • Utilize Scripts that The following tools

148

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

specialised

libraries for

data cleaning

Highlight advanced

libraries like

pyjanitor and

dataprep for cleaning

large datasets.

Activity:

Explore time-saving

features of

specialized libraries

(e.g., chaining

operations).

Discussion: When to

use built-in tools

versus specialized

libraries.

advanced

libraries for

repetitive

cleaning tasks.

• Apply chaining

operations for

efficiency.

demonstrate

efficient cleaning

workflows using

specialized

libraries.

Detailed knowledge of:

Method used: The student

should explain how to:

• choose between built-

in tools versus

specialized libraries.

Principles: The student

should explain the

principles of

• Efficiency in handling

repetitive tasks.

Theories: The student

should explain:

• Role of automation in

reducing errors during

data cleaning.

Circumstantial

knowledge:

Detailed knowledge about:

• chaining methods

versus performing

operations

sequentially.

and equipment are

to be available:

• Computer

• Tools:

pyjanitor,

dataprep,

pandas-

profiling.

• Datasets

requiring

complex

cleaning (e.g.,

merging,

reshaping).

3.4. Analysin

g data
a) Performing

basic

statistical

analysis

Brainstorm: Guide

students to discuss

and recap different

types of basic

statistics

Demonstration:

Illustrtae statistical

measures (mean,

median, mode,

• Compute

descriptive

statistics using

Python

libraries.

• Identify

appropriate

statistical

measures for

A report

summarizing key

statistical insights

(e.g., central

tendency,

variability,

distribution).

Detailed knowledge of:

Method used: The student

should explain

• demonstrate step-by-

step the statistical

computations.

Principles: The student

should explain the

principles of:

The following tools

and equipment are

to be available:

• Computer

• Tools: numpy,

scipy, pandas.

• Example

datasets (e.g.,

weather, sales,

95

149

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

variance, standard

deviation) using

libraries like numpy

and scipy.

Hands-On Activity:

Students calculate

descriptive statistics

for datasets.

Discussion:

Importance of

understanding data

distribution.

given data. • Central tendency,

dispersion, and

inferential statistics.

Theories: The student

should explain:

• Different statistical

methods

• Importance of

statistical

significance.

Circumstantial

knowledge:

Detailed knowledge about:

• Patterns in datasets

and interpreting

variability.

or student

performance

data).

b) Using

specialised

libraries to

analyse data

Demonstration:

Illustrate specialized

libraries like

statsmodels and scipy

for advanced

statistical testing

(e.g., t-tests,

ANOVA).

Activity: Students

use libraries for

hypothesis testing

and correlation

analysis.

Discussion:

Choosing the right

statistical test for the

• Apply

specialized

libraries to

solve statistical

problems.

• Interpret

statistical test

results.

Python scripts

demonstrating use

of specialized

libraries for

statistical analysis

and visualizations.

Detailed knowledge of:

Method used: The student

should explain how to

• apply specialized

libraries for real-

world data analysis

problems.

Principles: The student

should explain the

principles of:

• Statistical testing for

hypothesis validation

Theories: The student

should explain:

• Fundamentals of

correlation,

The following tools

and equipment are

to be available:

• Computer

• Tools:

statsmodels,

scipy, seaborn.

• Datasets

requiring

hypothesis

testing or

advanced

statistical

computations.

150

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

data type.

regression, and p-

values.

Circumstantial

knowledge:

Detailed knowledge about:

• assumptions and

limitations of

statistical methods

used.
3.5. Visualisi

ng data

a) Creating

basic plots

using

libraries

Demonstration:

Illustrate how to use

libraries like

matplotlib and

seaborn for basic

plots (e.g., line, bar,

scatter, histogram).

Activity: Students

create plots for

datasets.

Discussion:

Choosing the right

type of plot for the

data.

• Use data

analysis

libraries to

generate plots.

• Label and style

plots

appropriately.

Visualizations

(e.g., bar charts,

scatter plots) that

effectively

communicate data

insights.

Detailed knowledge of:

Method used: The student

should explain how to:

• Demonstrate plotting

techniques and

customization.

Principles: The student

should explain the

principles of:

• Data visualization.

Theories: The student

should explain:

• Axes, scales, and

color schemes.

Circumstantial

knowledge:

Detailed knowledge about:

• Selecting

visualizations that

align with the data

type and target

audience.

The following tools

and equipment are

to be available:

• Computer

• Tools:

matplotlib,

seaborn.

• Example

datasets (e.g.,

sales,

population, or

survey data).

27

b) Creating Demonstration: • Add Interactive charts Detailed knowledge of: The following tools

151

Module Title

(Main

Competence)

Unit Title

(Specific

Competences

)

Elements

(Learning

Activities)

Suggested Teaching

and Learning

Methods

Assessment Criteria Training

Requirements/

Suggested

Resources

Number

of

Periods

per Unit
Process Assessment

Product/Services

Assessment
Knowledge Assessment

basic

interactive

visualisations

Demonstrate using

libraries like plotly

and bokeh for

interactive

visualizations.

Activity:

Students create

dashboards or

interactive plots.

interactivity

(e.g., zoom,

hover) to

visualizations.

• Integrate

widgets in

visualization.

(e.g., interactive

scatter plots,

dashboards) that

allow user

interaction and

exploration.

Method used: The student

should explain how to:

• create interactive

elements.

Principles: The student

should explain the

principles of:

• user engagement

through interactivity.

Theories: The student

should explain:

• Concepts of

responsiveness and

dynamic data updates.

Circumstantial

knowledge:

Detailed knowledge about:

• interactivity features

based on the target

audience's needs and

technical

environment.

and equipment are

to be available:

• Computer.

• Tools: plotly,

bokeh, dash.

• Sample

scenarios for

creating

dashboards

(e.g., financial

or health data).

152

Bibliography

1. Vocational Education and Training Authority. (2023). Curriculum for Computer

Programming. Vocational Education and Training Authority

2. Ministry of Education, Science and Technology. (2023). Curriculum for Ordinary Secondary

Education, Form I-IV. Dar Es Salaam: Tanzania Institute of Education

